Pregunta
upstudy study bank question image url

Find the coordinates of the vertex and the equation of the axis of symmetry for the parabola given by the equation. \[ y=x^{2}+8 \] vertex \[ (x, y)=(\square \] axis of symmetry

Ask by Maxwell Willis. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The vertex is at \((0, 8)\) and the axis of symmetry is \(x = 0\).

Solución

To find the coordinates of the vertex and the equation of the axis of symmetry for the parabola given by the equation \[ y = x^2 + 8, \] we can follow these steps: 1. **Identify the standard form of the parabola**: The equation of a parabola in standard form is given by \[ y = a(x - h)^2 + k, \] where \((h, k)\) is the vertex of the parabola. 2. **Rewrite the given equation**: The given equation can be rewritten as \[ y = 1(x - 0)^2 + 8. \] From this, we can see that \(a = 1\), \(h = 0\), and \(k = 8\). 3. **Determine the vertex**: The vertex \((h, k)\) is therefore \[ (0, 8). \] 4. **Find the axis of symmetry**: The axis of symmetry for a parabola in this form is given by the line \[ x = h. \] Since \(h = 0\), the equation of the axis of symmetry is \[ x = 0. \] Now, summarizing the results: - The coordinates of the vertex are \[ (x, y) = (0, 8). \] - The equation of the axis of symmetry is \[ x = 0. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The vertex of the parabola given by the equation \( y = x^{2} + 8 \) can be found by recognizing that this is in the standard form \( y = a(x - h)^{2} + k \). Here, \( h = 0 \) and \( k = 8 \), so the vertex is at \( (0, 8) \). The axis of symmetry for a parabola in this form is simply the vertical line that passes through the vertex. Therefore, the equation of the axis of symmetry is \( x = 0 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad