Responder
To graph the function \( f(x) = \frac{-10x + 20}{x^2 - 3x - 10} \), follow these steps:
1. **Vertical Asymptotes**: Draw lines at \( x = -2 \) and \( x = 5 \).
2. **Intercepts**:
- **X-Intercepts**: Plot points at approximately \( x = -1.841222 \), \( x = -0.214838 \), \( x = 2 \), and \( x = 5.05606 \).
- **Y-Intercept**: Plot at \( (0, -2) \).
3. **Additional Points**:
- Near \( x = -2 \): \( (-3, 6.25) \) and \( (-1, -5) \).
- Near \( x = 5 \): \( (4, 3.33) \) and \( (6, -5) \).
4. **Graph**: Plot all these points and sketch the curve accordingly, ensuring it approaches the vertical asymptotes but does not cross them.
This will give a clear representation of the function's behavior.
Solución
Function by following steps:
- step0: Find the y-intercept:
\(f\left(x\right)=-10x+\frac{20}{x^{2}-3x-10}\)
- step1: Set \(x\)=0\(:\)
\(f\left(0\right)=-10\times 0+\frac{20}{0^{2}-3\times 0-10}\)
- step2: Multiply:
\(f\left(0\right)=-10\times 0+\frac{20}{0^{2}-0-10}\)
- step3: Multiply:
\(f\left(0\right)=0+\frac{20}{0^{2}-0-10}\)
- step4: Simplify:
\(f\left(0\right)=-2\)
Find the horizontal asymptotes of \( f(x)=-10x+20/(x^2-3x-10) \).
Function by following steps:
- step0: Find the horizontal asymptotes:
\(f\left(x\right)=-10x+\frac{20}{x^{2}-3x-10}\)
- step1: Evaluate the limits \(\lim _{x\rightarrow +\infty}\left(f\left(x\right)\right)\) and \(\lim _{x\rightarrow -\infty}\left(f\left(x\right)\right):\)
\(\begin{align}&\lim _{x\rightarrow +\infty}\left(-10x+\frac{20}{x^{2}-3x-10}\right)\\&\lim _{x\rightarrow -\infty}\left(-10x+\frac{20}{x^{2}-3x-10}\right)\end{align}\)
- step2: Calculate:
\(\begin{align}&-\infty\\&+\infty\end{align}\)
- step3: The function has no horizontal asymptotes:
\(\textrm{No horizontal asymptotes}\)
Analyze the x intercept of the function \( f(x)=-10x+20/(x^2-3x-10) \)
Function by following steps:
- step0: Find the \(x\)-intercept/zero:
\(f\left(x\right)=-10x+\frac{20}{x^{2}-3x-10}\)
- step1: Set \(f\left(x\right)\)=0\(:\)
\(0=-10x+\frac{20}{x^{2}-3x-10}\)
- step2: Swap the sides:
\(-10x+\frac{20}{x^{2}-3x-10}=0\)
- step3: Find the domain:
\(-10x+\frac{20}{x^{2}-3x-10}=0,x \in \left(-\infty,-2\right)\cup \left(-2,5\right)\cup \left(5,+\infty\right)\)
- step4: Multiply both sides of the equation by LCD:
\(\left(-10x+\frac{20}{x^{2}-3x-10}\right)\left(x^{2}-3x-10\right)=0\times \left(x^{2}-3x-10\right)\)
- step5: Simplify the equation:
\(-10x^{3}+30x^{2}+100x+20=0\)
- step6: Factor the expression:
\(-10\left(x^{3}-3x^{2}-10x-2\right)=0\)
- step7: Divide both sides:
\(x^{3}-3x^{2}-10x-2=0\)
- step8: Calculate:
\(\begin{align}&x\approx 5.05606\\&x\approx -1.841222\\&x\approx -0.214838\end{align}\)
- step9: Check if the solution is in the defined range:
\(\begin{align}&x\approx 5.05606\\&x\approx -1.841222\\&x\approx -0.214838\end{align},x \in \left(-\infty,-2\right)\cup \left(-2,5\right)\cup \left(5,+\infty\right)\)
- step10: Find the intersection:
\(\begin{align}&x\approx 5.05606\\&x\approx -1.841222\\&x\approx -0.214838\end{align}\)
- step11: Calculate:
\(x_{1}\approx -1.841222,x_{2}\approx -0.214838,x_{3}\approx 5.05606\)
Find the vertical asymptotes of \( f(x)=-10x+20/(x^2-3x-10) \).
Function by following steps:
- step0: Find the vertical asymptotes:
\(f\left(x\right)=-10x+\frac{20}{x^{2}-3x-10}\)
- step1: Evaluate the limit:
\(\begin{align}&\lim _{x\rightarrow -2}\left(-10x+\frac{20}{x^{2}-3x-10}\right)\\&\lim _{x\rightarrow 5}\left(-10x+\frac{20}{x^{2}-3x-10}\right)\end{align}\)
- step2: Calculate:
\(\begin{align}&\textrm{The limit does not exist}\\&\textrm{The limit does not exist}\end{align}\)
- step3: \(x=-2\) is a vertical asymptote\(:\)
\(\begin{align}&x=-2\textrm{ }\textrm{is a vertical asymptote}\\&x=5\textrm{ }\textrm{is a vertical asymptote}\end{align}\)
- step4: List all vertical asymptotes of the function:
\(\begin{align}&x=-2\\&x=5\end{align}\)
Let's analyze the function \( f(x) = \frac{-10x + 20}{x^2 - 3x - 10} \) step by step.
### Step 1: Find Vertical Asymptotes
The vertical asymptotes occur where the denominator is zero. From our calculations, we found:
- The vertical asymptotes are at \( x = -2 \) and \( x = 5 \).
### Step 2: Find Horizontal Asymptotes
Horizontal asymptotes are determined by the degrees of the numerator and denominator. In this case:
- The degree of the numerator (linear) is 1.
- The degree of the denominator (quadratic) is 2.
Since the degree of the denominator is greater than the degree of the numerator, there are **no horizontal asymptotes**.
### Step 3: Find Intercepts
#### X-Intercepts
To find the x-intercepts, we set the numerator equal to zero:
\[
-10x + 20 = 0 \implies x = 2
\]
However, we also found additional x-intercepts through calculations:
- \( x_1 \approx -1.841222 \)
- \( x_2 \approx -0.214838 \)
- \( x_3 \approx 5.05606 \)
#### Y-Intercept
To find the y-intercept, we evaluate \( f(0) \):
\[
f(0) = \frac{-10(0) + 20}{0^2 - 3(0) - 10} = \frac{20}{-10} = -2
\]
Thus, the y-intercept is at \( (0, -2) \).
### Step 4: Plot Points Around Vertical Asymptotes
We need to plot at least one point on each side of the vertical asymptotes \( x = -2 \) and \( x = 5 \).
1. **For \( x = -2 \)**:
- Choose \( x = -3 \):
\[
f(-3) = \frac{-10(-3) + 20}{(-3)^2 - 3(-3) - 10} = \frac{30 + 20}{9 + 9 - 10} = \frac{50}{8} = 6.25
\]
- Choose \( x = -1 \):
\[
f(-1) = \frac{-10(-1) + 20}{(-1)^2 - 3(-1) - 10} = \frac{10 + 20}{1 + 3 - 10} = \frac{30}{-6} = -5
\]
2. **For \( x = 5 \)**:
- Choose \( x = 4 \):
\[
f(4) = \frac{-10(4) + 20}{(4)^2 - 3(4) - 10} = \frac{-40 + 20}{16 - 12 - 10} = \frac{-20}{-6} \approx 3.33
\]
- Choose \( x = 6 \):
\[
f(6) = \frac{-10(6) + 20}{(6)^2 - 3(6) - 10} = \frac{-60 + 20}{36 - 18 - 10} = \frac{-40}{8} = -5
\]
### Summary of Points to Plot
- Vertical Asymptotes: \( x = -2 \), \( x = 5 \)
- X-Intercepts: \( x \approx -1.841222, -0.214838, 2, 5.05606 \)
- Y-Intercept: \( (0, -2) \)
- Points:
- Near \( x = -2 \): \( (-3, 6.25) \) and \( (-1, -5) \)
- Near \( x = 5 \): \( (4, 3.33) \) and \( (6, -5) \)
Now, let's graph the function with the identified asymptotes, intercepts, and additional points.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución