Pregunta
upstudy study bank question image url

Graph the fational function- \[ f(x)=\frac{-10 x+20}{x^{2}-3 x-10} \] Start by drawing the vertical and horizontal asympiotes. Then plot the intercepts (il ony), and plot at least one point on each side of each vertical asymptote. Finally, click on the graph-a-function button.

Ask by Schwartz Coleman. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the function \( f(x) = \frac{-10x + 20}{x^2 - 3x - 10} \), follow these steps: 1. **Vertical Asymptotes**: Draw lines at \( x = -2 \) and \( x = 5 \). 2. **Intercepts**: - **X-Intercepts**: Plot points at approximately \( x = -1.841222 \), \( x = -0.214838 \), \( x = 2 \), and \( x = 5.05606 \). - **Y-Intercept**: Plot at \( (0, -2) \). 3. **Additional Points**: - Near \( x = -2 \): \( (-3, 6.25) \) and \( (-1, -5) \). - Near \( x = 5 \): \( (4, 3.33) \) and \( (6, -5) \). 4. **Graph**: Plot all these points and sketch the curve accordingly, ensuring it approaches the vertical asymptotes but does not cross them. This will give a clear representation of the function's behavior.

Solución

Function by following steps: - step0: Find the y-intercept: \(f\left(x\right)=-10x+\frac{20}{x^{2}-3x-10}\) - step1: Set \(x\)=0\(:\) \(f\left(0\right)=-10\times 0+\frac{20}{0^{2}-3\times 0-10}\) - step2: Multiply: \(f\left(0\right)=-10\times 0+\frac{20}{0^{2}-0-10}\) - step3: Multiply: \(f\left(0\right)=0+\frac{20}{0^{2}-0-10}\) - step4: Simplify: \(f\left(0\right)=-2\) Find the horizontal asymptotes of \( f(x)=-10x+20/(x^2-3x-10) \). Function by following steps: - step0: Find the horizontal asymptotes: \(f\left(x\right)=-10x+\frac{20}{x^{2}-3x-10}\) - step1: Evaluate the limits \(\lim _{x\rightarrow +\infty}\left(f\left(x\right)\right)\) and \(\lim _{x\rightarrow -\infty}\left(f\left(x\right)\right):\) \(\begin{align}&\lim _{x\rightarrow +\infty}\left(-10x+\frac{20}{x^{2}-3x-10}\right)\\&\lim _{x\rightarrow -\infty}\left(-10x+\frac{20}{x^{2}-3x-10}\right)\end{align}\) - step2: Calculate: \(\begin{align}&-\infty\\&+\infty\end{align}\) - step3: The function has no horizontal asymptotes: \(\textrm{No horizontal asymptotes}\) Analyze the x intercept of the function \( f(x)=-10x+20/(x^2-3x-10) \) Function by following steps: - step0: Find the \(x\)-intercept/zero: \(f\left(x\right)=-10x+\frac{20}{x^{2}-3x-10}\) - step1: Set \(f\left(x\right)\)=0\(:\) \(0=-10x+\frac{20}{x^{2}-3x-10}\) - step2: Swap the sides: \(-10x+\frac{20}{x^{2}-3x-10}=0\) - step3: Find the domain: \(-10x+\frac{20}{x^{2}-3x-10}=0,x \in \left(-\infty,-2\right)\cup \left(-2,5\right)\cup \left(5,+\infty\right)\) - step4: Multiply both sides of the equation by LCD: \(\left(-10x+\frac{20}{x^{2}-3x-10}\right)\left(x^{2}-3x-10\right)=0\times \left(x^{2}-3x-10\right)\) - step5: Simplify the equation: \(-10x^{3}+30x^{2}+100x+20=0\) - step6: Factor the expression: \(-10\left(x^{3}-3x^{2}-10x-2\right)=0\) - step7: Divide both sides: \(x^{3}-3x^{2}-10x-2=0\) - step8: Calculate: \(\begin{align}&x\approx 5.05606\\&x\approx -1.841222\\&x\approx -0.214838\end{align}\) - step9: Check if the solution is in the defined range: \(\begin{align}&x\approx 5.05606\\&x\approx -1.841222\\&x\approx -0.214838\end{align},x \in \left(-\infty,-2\right)\cup \left(-2,5\right)\cup \left(5,+\infty\right)\) - step10: Find the intersection: \(\begin{align}&x\approx 5.05606\\&x\approx -1.841222\\&x\approx -0.214838\end{align}\) - step11: Calculate: \(x_{1}\approx -1.841222,x_{2}\approx -0.214838,x_{3}\approx 5.05606\) Find the vertical asymptotes of \( f(x)=-10x+20/(x^2-3x-10) \). Function by following steps: - step0: Find the vertical asymptotes: \(f\left(x\right)=-10x+\frac{20}{x^{2}-3x-10}\) - step1: Evaluate the limit: \(\begin{align}&\lim _{x\rightarrow -2}\left(-10x+\frac{20}{x^{2}-3x-10}\right)\\&\lim _{x\rightarrow 5}\left(-10x+\frac{20}{x^{2}-3x-10}\right)\end{align}\) - step2: Calculate: \(\begin{align}&\textrm{The limit does not exist}\\&\textrm{The limit does not exist}\end{align}\) - step3: \(x=-2\) is a vertical asymptote\(:\) \(\begin{align}&x=-2\textrm{ }\textrm{is a vertical asymptote}\\&x=5\textrm{ }\textrm{is a vertical asymptote}\end{align}\) - step4: List all vertical asymptotes of the function: \(\begin{align}&x=-2\\&x=5\end{align}\) Let's analyze the function \( f(x) = \frac{-10x + 20}{x^2 - 3x - 10} \) step by step. ### Step 1: Find Vertical Asymptotes The vertical asymptotes occur where the denominator is zero. From our calculations, we found: - The vertical asymptotes are at \( x = -2 \) and \( x = 5 \). ### Step 2: Find Horizontal Asymptotes Horizontal asymptotes are determined by the degrees of the numerator and denominator. In this case: - The degree of the numerator (linear) is 1. - The degree of the denominator (quadratic) is 2. Since the degree of the denominator is greater than the degree of the numerator, there are **no horizontal asymptotes**. ### Step 3: Find Intercepts #### X-Intercepts To find the x-intercepts, we set the numerator equal to zero: \[ -10x + 20 = 0 \implies x = 2 \] However, we also found additional x-intercepts through calculations: - \( x_1 \approx -1.841222 \) - \( x_2 \approx -0.214838 \) - \( x_3 \approx 5.05606 \) #### Y-Intercept To find the y-intercept, we evaluate \( f(0) \): \[ f(0) = \frac{-10(0) + 20}{0^2 - 3(0) - 10} = \frac{20}{-10} = -2 \] Thus, the y-intercept is at \( (0, -2) \). ### Step 4: Plot Points Around Vertical Asymptotes We need to plot at least one point on each side of the vertical asymptotes \( x = -2 \) and \( x = 5 \). 1. **For \( x = -2 \)**: - Choose \( x = -3 \): \[ f(-3) = \frac{-10(-3) + 20}{(-3)^2 - 3(-3) - 10} = \frac{30 + 20}{9 + 9 - 10} = \frac{50}{8} = 6.25 \] - Choose \( x = -1 \): \[ f(-1) = \frac{-10(-1) + 20}{(-1)^2 - 3(-1) - 10} = \frac{10 + 20}{1 + 3 - 10} = \frac{30}{-6} = -5 \] 2. **For \( x = 5 \)**: - Choose \( x = 4 \): \[ f(4) = \frac{-10(4) + 20}{(4)^2 - 3(4) - 10} = \frac{-40 + 20}{16 - 12 - 10} = \frac{-20}{-6} \approx 3.33 \] - Choose \( x = 6 \): \[ f(6) = \frac{-10(6) + 20}{(6)^2 - 3(6) - 10} = \frac{-60 + 20}{36 - 18 - 10} = \frac{-40}{8} = -5 \] ### Summary of Points to Plot - Vertical Asymptotes: \( x = -2 \), \( x = 5 \) - X-Intercepts: \( x \approx -1.841222, -0.214838, 2, 5.05606 \) - Y-Intercept: \( (0, -2) \) - Points: - Near \( x = -2 \): \( (-3, 6.25) \) and \( (-1, -5) \) - Near \( x = 5 \): \( (4, 3.33) \) and \( (6, -5) \) Now, let's graph the function with the identified asymptotes, intercepts, and additional points.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the rational function \( f(x) = \frac{-10x + 20}{x^2 - 3x - 10} \), start by identifying the vertical and horizontal asymptotes. First, for the vertical asymptotes, set the denominator \( x^2 - 3x - 10 = 0 \). Factoring gives \( (x - 5)(x + 2) = 0 \), resulting in vertical asymptotes at \( x = 5 \) and \( x = -2 \). For the horizontal asymptote, since the degree of the numerator (1) is less than the degree of the denominator (2), the horizontal asymptote is at \( y = 0 \). Next, find the intercepts. The x-intercept occurs when \( f(x) = 0 \), so set the numerator \( -10x + 20 = 0 \), leading to \( x = 2 \). The y-intercept happens when \( x = 0 \), giving \( f(0) = \frac{20}{-10} = -2 \). Thus, the intercepts are \( (2, 0) \) and \( (0, -2) \). To plot points close to the vertical asymptotes, choose \( x = 4 \) (just left of \( x = 5 \)) and \( f(4) = \frac{-10(4) + 20}{4^2 - 3(4) - 10} = \frac{-20}{-2} = 10 \), and then \( x = 6 \) (just right of \( x = 5 \)) leads to \( f(6) = \frac{-10(6) + 20}{6^2 - 3(6) - 10} = \frac{-40}{-8} = 5 \). For \( x = -3 \) (just left of \( x = -2 \)), \( f(-3) = \frac{-10(-3) + 20}{(-3)^2 - 3(-3) - 10} = \frac{50}{-4} = -12.5 \), and for \( x = -1 \) (just right of \( x = -2 \)), \( f(-1) = \frac{-10(-1) + 20}{(-1)^2 - 3(-1) - 10} = \frac{30}{6} = 5 \). Now you're ready to sketch the graph around these points, asymptotes, and intercepts!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad