Pregunta
upstudy study bank question image url

Find the perimeter of the trapezoid with these vertices. \[ (2,2),(-5,2),(-2,-5),(-5,-5) \] Give an exact answer (not a decimal approximation). Simplify your answer as much as possible.

Ask by Frank Love. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The perimeter of the trapezoid is \(17 + \sqrt{65}\).

Solución

To find the perimeter of the trapezoid, we first choose an order for the vertices so that the sides form a closed, non‐intersecting shape with one pair of parallel sides. Notice that the points (2,2) and (–5,2) share the same y‑coordinate, as do the points (–2,–5) and (–5,–5). This tells us that the segments connecting (2,2) to (–5,2) and (–5,–5) to (–2,–5) are horizontal and thus parallel. These segments can serve as the bases of the trapezoid. A convenient order for the vertices is:   (2,2) → (–5,2) → (–5,–5) → (–2,–5) → back to (2,2). Now, we calculate the distance between each pair of consecutive points: 1. From (2,2) to (–5,2):   Since the y‑coordinate is the same, the distance is the difference in x‑coordinates:   Distance = |2 – (–5)| = 7. 2. From (–5,2) to (–5,–5):   Now the x‑coordinate is constant, so the distance is the difference in y‑coordinates:   Distance = |2 – (–5)| = 7. 3. From (–5,–5) to (–2,–5):   Here the y‑coordinate is the same, so the distance is:   Distance = |(–5) – (–2)| = 3. 4. From (–2,–5) back to (2,2):   Use the distance formula:   Distance = √[(2 – (–2))² + (2 – (–5))²]        = √[(4)² + (7)²]        = √(16 + 49)        = √65. Finally, add the side lengths to find the perimeter: Perimeter = 7 + 7 + 3 + √65 = 17 + √65. Thus, the exact perimeter of the trapezoid is 17 + √65.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the perimeter of the trapezoid with the given vertices \((2,2),(-5,2),(-2,-5),(-5,-5)\), we first need to calculate the lengths of its sides. The perimeter \(P\) is the sum of all side lengths. 1. **Calculate the lengths of the sides**: - Length of side from \((2,2)\) to \((-5,2)\): \[ |x_2 - x_1| = |-5 - 2| = 7 \] - Length of side from \((-5,2)\) to \((-2,-5)\): \[ \sqrt{((-2) - (-5))^2 + ((-5) - 2)^2} = \sqrt{(3)^2 + (-7)^2} = \sqrt{9 + 49} = \sqrt{58} \] - Length of side from \((-2,-5)\) to \((-5,-5)\): \[ |x_2 - x_1| = |-5 - (-2)| = |-5 + 2| = 3 \] - Length of side from \((-5,-5)\) to \((2,2)\): \[ \sqrt{(2 - (-5))^2 + (2 - (-5))^2} = \sqrt{(7)^2 + (7)^2} = \sqrt{49 + 49} = \sqrt{98} = 7\sqrt{2} \] 2. **Add the lengths to get the perimeter**: \[ P = 7 + \sqrt{58} + 3 + 7\sqrt{2} \] Combine like terms: \[ P = 10 + \sqrt{58} + 7\sqrt{2} \] Thus, the exact perimeter of the trapezoid is \[ \boxed{10 + \sqrt{58} + 7\sqrt{2}}. \]

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad