Question For the rotation \( \frac{60 \pi}{7} \), find the coterminal angle from \( 0 \leq \theta<2 \pi \), the quadrant, and the reference angle. Answer Attempt s out of a The coterminal angle is
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the coterminal angle for \( \frac{60 \pi}{7} \), we can subtract \( 2\pi \) until the angle is within the desired range. Noting that \( 2\pi = \frac{14\pi}{7} \), we calculate: \[ \frac{60\pi}{7} - 2\pi = \frac{60\pi}{7} - \frac{14\pi}{7} = \frac{46\pi}{7} \] Subtracting \( 2\pi \) again: \[ \frac{46\pi}{7} - 2\pi = \frac{46\pi}{7} - \frac{14\pi}{7} = \frac{32\pi}{7} \] And again: \[ \frac{32\pi}{7} - 2\pi = \frac{32\pi}{7} - \frac{14\pi}{7} = \frac{18\pi}{7} \] And once more: \[ \frac{18\pi}{7} - 2\pi = \frac{18\pi}{7} - \frac{14\pi}{7} = \frac{4\pi}{7} \] So the coterminal angle is \( \frac{4\pi}{7} \), which lies in the second quadrant since \( \frac{4\pi}{7} \) is between \( \frac{\pi}{2} \) and \( \pi \). The reference angle, calculated as \( \pi - \frac{4\pi}{7} = \frac{3\pi}{7} \). The coterminal angle is \( \frac{4\pi}{7} \), it lies in the second quadrant, and the reference angle is \( \frac{3\pi}{7} \).
