1. Find the point(s) of intersection by graphing. a) \( f(x)=x^{2}, g(x)=x+6 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the points of intersection by graphing, you first plot the two functions: \( f(x) = x^2 \) (a parabola opening upwards) and \( g(x) = x + 6 \) (a straight line). The intersection occurs where the outputs are equal, so you look for the points where the graph of the parabola and the line cross each other. By sketching, you would find visually where they meet. To be a math detective, you can solve the equations as well: set \( f(x) = g(x) \), which results in \( x^2 = x + 6 \). Rearranging gives \( x^2 - x - 6 = 0 \). Factoring reveals the roots, which are \( x = 3 \) and \( x = -2 \). Plugging these back into either function shows the corresponding \( y \)-values, giving you the intersection points at \( (3, 9) \) and \( (-2, 4) \). Voilà!
