Pregunta
upstudy study bank question image url

191 Find the slope of the straight line whose equation is \( \frac{y-2}{x}=\frac{1}{2} \), then find the length of the intercepted part of \( y \)-axis.

Ask by Floyd Murphy. in Egypt
Nov 10,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The slope of the line is \( \frac{1}{2} \) and the length of the intercepted part of the \( y \)-axis is \( 2 \).

Solución

To find the slope of the straight line given by the equation \[ \frac{y-2}{x} = \frac{1}{2}, \] we can first rearrange this equation into the slope-intercept form \( y = mx + b \). Starting with the given equation, we can cross-multiply to eliminate the fraction: \[ y - 2 = \frac{1}{2} x. \] Next, we can isolate \( y \): \[ y = \frac{1}{2} x + 2. \] From this equation, we can see that the slope \( m \) of the line is \[ m = \frac{1}{2}. \] Next, we need to find the length of the intercepted part of the \( y \)-axis. The \( y \)-intercept occurs when \( x = 0 \). Substituting \( x = 0 \) into the equation: \[ y = \frac{1}{2}(0) + 2 = 2. \] Thus, the \( y \)-intercept is at the point \( (0, 2) \). To find the length of the intercepted part of the \( y \)-axis, we need to determine the points where the line intersects the \( y \)-axis. Since the line only intersects the \( y \)-axis at one point (the \( y \)-intercept), the length of the intercepted part of the \( y \)-axis is simply the distance from the origin \( (0, 0) \) to the point \( (0, 2) \). The length of this segment is: \[ \text{Length} = |2 - 0| = 2. \] Thus, the final answers are: - The slope of the line is \( \frac{1}{2} \). - The length of the intercepted part of the \( y \)-axis is \( 2 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the slope of the line given by the equation \( \frac{y-2}{x}=\frac{1}{2} \), we can rewrite it in slope-intercept form (y = mx + b). Starting with the original equation, we multiply both sides by \( x \): \[ y - 2 = \frac{1}{2} x \] Now, add 2 to both sides: \[ y = \frac{1}{2} x + 2 \] From this equation, we can see that the slope \( m \) of the line is \( \frac{1}{2} \). Next, we want to find the length of the intercepted part of the \( y \)-axis. The \( y \)-intercept occurs when \( x = 0 \). Plugging this value into the equation: \[ y = \frac{1}{2}(0) + 2 = 2 \] The intercept on the \( y \)-axis is the point \( (0, 2) \), which means the line cuts the \( y \)-axis at 2 units. Since the line continues infinitely in both directions, the length of the intercepted part on the \( y \)-axis is simply the distance from the origin \( (0,0) \) to the point \( (0, 2) \), which is 2 units. Thus, the slope is \( \frac{1}{2} \) and the length of the intercepted part of the \( y \)-axis is 2 units.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad