Pregunta
upstudy study bank question image url

Identify the vertex and determine the minimum or maximum value of the function. \( f(x)=-2(x-4)^{2}+7 \)

Ask by Perkins Nichols. in the United States
Nov 23,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The vertex is \( (4, 7) \) and the maximum value is \( 7 \).

Solución

To identify the vertex and determine the minimum or maximum value of the function \( f(x) = -2(x-4)^2 + 7 \), we can analyze the function in its vertex form. The function is in the form \( f(x) = a(x-h)^2 + k \), where: - \( (h, k) \) is the vertex of the parabola, - \( a \) determines the direction of the parabola (if \( a > 0 \), it opens upwards and has a minimum; if \( a < 0 \), it opens downwards and has a maximum). In this case: - \( a = -2 \) (which is less than 0, indicating the parabola opens downwards), - \( h = 4 \), - \( k = 7 \). Thus, the vertex of the function is \( (4, 7) \). Since the parabola opens downwards, the maximum value of the function occurs at the vertex. Therefore, the maximum value of \( f(x) \) is: \[ \text{Maximum value} = k = 7. \] In summary: - The vertex is \( (4, 7) \). - The maximum value of the function is \( 7 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The vertex of the function \( f(x) = -2(x-4)^{2} + 7 \) is found at the point \( (4, 7) \). Since the coefficient of the squared term is negative (-2), this indicates that the vertex represents a maximum point. Therefore, the maximum value of the function is \( 7 \), occurring at \( x = 4 \). To solve similar quadratic functions efficiently, remember to identify the vertex form \( f(x) = a(x-h)^2 + k \), where \( (h, k) \) is the vertex. A quick check on the signs: if \( a < 0 \), you have a maximum; if \( a > 0 \), you have a minimum. This can save you time in determining the nature of the vertex! Common mistakes include overlooking the vertex form and forgetting that the sign of \( a \) determines the extremum. Always double-check your function's form and the sign of the coefficient before concluding whether you have a maximum or minimum. Happy graphing!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad