Pregunta

42. \( \cos \left(\frac{\pi}{2}-x\right)=\sin x \)

Ask by Savage Osborne. in South Africa
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For any angle x, cos(π/2 – x) equals sin x.

Solución

This is a well-known trigonometric identity called a “co-function” identity. It states that the cosine of the complement of an angle is equal to the sine of the angle. In other words, for any real number x,   cos(π/2 – x) = sin x. Here's a brief explanation of why this identity holds: 1. On the unit circle, an angle x has the coordinates (cos x, sin x). The complementary angle (π/2 – x) corresponds to “rotating” in such a way that the sine and cosine coordinates swap roles. As a result, cos(π/2 – x) gives the sine of the original angle x. 2. You can also think of it in the context of right triangles. In a right triangle, the acute angles are complementary (they add up to π/2). The cosine of one acute angle is the sine of the other acute angle. Both explanations lead to the conclusion that for every angle x, the identity holds:   cos(π/2 – x) = sin x. Thus, the expression you provided is correct and is true for all values of x.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that this trigonometric identity is actually a reflection of the complementary angle relationship? When you think about a right triangle, the angle complementary to \( x \) is \( \frac{\pi}{2} - x \). In these triangles, the cosine of one angle (the adjacent side over the hypotenuse) equals the sine of its complementary angle (the opposite side over the hypotenuse). It’s a beautiful symmetry in trigonometry! In real-world applications, this trigonometric relationship pops up in various fields including engineering, physics, and computer graphics. For example, when analyzing waveforms, the sine and cosine functions often represent oscillations. Knowing these identities allows engineers to simplify calculations by converting between sine and cosine, making complex wave interactions easier to analyze and design for!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad