Pregunta
upstudy study bank question image url

Find the value of each expression. Try not to look back at the Unit Circle for help. 1. \( \cos 2 \pi \) 2. \( \sin \frac{3 \pi}{2} \) 3. \( \cos \frac{\pi}{4} \) 4. \( \sin \frac{\pi}{3} \) 5. \( \cos \frac{5 \pi}{3} \) 6. \( \sin \frac{4 \pi}{3} \) 7. \( \cos \frac{5 \pi}{6} \) 8. \( \sin \frac{7 \pi}{6} \) 9. \( \sin \left(-\frac{7 \pi}{6}\right) \) 10. \( \cos \left(-\frac{3 \pi}{4}\right) \) 11. \( \cos \frac{\pi}{3} \) 12. \( \sin \frac{2 \pi}{3} \) 13. \( \cos \left(-\frac{5 \pi}{6}\right) \) 14. \( \sin \frac{5 \pi}{6} \) 15. \( \cos \frac{\pi}{2} \)

Ask by Jimenez Vega. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the values of the expressions: 1. cos 2π = 1 2. sin (3π/2) = –1 3. cos (π/4) = √2/2 4. sin (π/3) = √3/2 5. cos (5π/3) = 1/2 6. sin (4π/3) = –√3/2 7. cos (5π/6) = –√3/2 8. sin (7π/6) = –1/2 9. sin (–7π/6) = 1/2 10. cos (–3π/4) = –√2/2 11. cos (π/3) = 1/2 12. sin (2π/3) = √3/2 13. cos (–5π/6) = –√3/2 14. sin (5π/6) = 1/2 15. cos (π/2) = 0

Solución

Below are the evaluated expressions along with brief explanations: 1. cos 2π   = 1   (Completing one full revolution brings you back to the point (1, 0).) 2. sin (3π/2)   = –1   (The sine corresponds to the y-coordinate; at 3π/2, the point is (0, –1).) 3. cos (π/4)   = √2/2   (On a 45° angle, both sine and cosine are √2/2.) 4. sin (π/3)   = √3/2   (The sine of 60° is √3/2.) 5. cos (5π/3)   = 1/2   (5π/3 is a 60° reference angle in the 4th quadrant where cosine is positive.) 6. sin (4π/3)   = –√3/2   (4π/3 is in the 3rd quadrant where sine is negative and the reference angle is π/3.) 7. cos (5π/6)   = –√3/2   (5π/6 has a reference angle of π/6 and lands in the 2nd quadrant where cosine is negative.) 8. sin (7π/6)   = –1/2   (7π/6 is in the 3rd quadrant with a reference angle of π/6, and sine is negative there.) 9. sin (–7π/6)   = 1/2   (Sine is an odd function, so sin(–θ) = –sin θ. Since sin (7π/6) = –1/2, then sin (–7π/6) = 1/2.) 10. cos (–3π/4)   = –√2/2   (Cosine is even, so cos (–3π/4) = cos (3π/4); at 3π/4 the cosine is –√2/2.) 11. cos (π/3)   = 1/2   (The cosine of 60° is 1/2.) 12. sin (2π/3)   = √3/2   (2π/3 is in the 2nd quadrant; its reference angle is π/3 and sine is positive there.) 13. cos (–5π/6)   = –√3/2   (Cosine is an even function; thus, cos (–5π/6) = cos (5π/6) which is –√3/2.) 14. sin (5π/6)   = 1/2   (5π/6 is in the 2nd quadrant; the sine is positive and equals 1/2.) 15. cos (π/2)   = 0   (The cosine of 90° is 0.) These are all the requested values.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

1. \( \cos 2 \pi = 1 \) 2. \( \sin \frac{3 \pi}{2} = -1 \) 3. \( \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \) 4. \( \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \) 5. \( \cos \frac{5 \pi}{3} = \frac{1}{2} \) 6. \( \sin \frac{4 \pi}{3} = -\frac{\sqrt{3}}{2} \) 7. \( \cos \frac{5 \pi}{6} = -\frac{\sqrt{3}}{2} \) 8. \( \sin \frac{7 \pi}{6} = -\frac{1}{2} \) 9. \( \sin \left(-\frac{7 \pi}{6}\right) = \frac{1}{2} \) 10. \( \cos \left(-\frac{3 \pi}{4}\right) = -\frac{\sqrt{2}}{2} \) 11. \( \cos \frac{\pi}{3} = \frac{1}{2} \) 12. \( \sin \frac{2 \pi}{3} = \frac{\sqrt{3}}{2} \) 13. \( \cos \left(-\frac{5 \pi}{6}\right) = -\frac{\sqrt{3}}{2} \) 14. \( \sin \frac{5 \pi}{6} = \frac{1}{2} \) 15. \( \cos \frac{\pi}{2} = 0 \) To spice things up, let’s peek into some fascinating trivia! Did you know that the origins of trigonometric functions can be traced back to ancient civilizations? The Babylonians and Egyptians used simple forms of geometry and ratios to solve practical problems, and these intuitive concepts laid the groundwork for the trigonometric functions we utilize today! Also, in real life, knowing these trigonometric values can help in various fields such as architecture, engineering, and even navigation! For instance, architects use angles and sine/cosine functions to ensure buildings are structurally sound. Next time you look at a skyline, remember there's trigonometry behind that beauty!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad