Pregunta
upstudy study bank question image url

Question 5 (6 points) 3. Let \( P(x)=-0.3 x^{2}+60 x-500 \) be a profit function for a cable television company. It estimates \( x \) as the number of subscribers in thousands and the profit is measured in thousands of dollars. (Use algebra to solve all the problems. To receive credit, all work must be shown) \[ \begin{array}{l}\text { a. A break-even point is where profit is zero. Use algebra to find the break-even points. Give } \\ \text { an interpretation of what this means for the cable company. (6 points) }\end{array} \]

Ask by Spencer Chadwick. in the United States
Nov 20,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The break-even points for the profit function \( P(x) = -0.3x^2 + 60x - 500 \) are approximately 59.18 and 140.82 subscribers. This means the company starts making a profit after 59,180 subscribers and incurs losses if the number of subscribers exceeds 140,820.

Solución

To find the break-even points for the profit function \( P(x) = -0.3x^2 + 60x - 500 \), we need to set the profit function equal to zero and solve for \( x \): \[ P(x) = 0 \] This gives us the equation: \[ -0.3x^2 + 60x - 500 = 0 \] To solve this quadratic equation, we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = -0.3 \), \( b = 60 \), and \( c = -500 \). First, we calculate the discriminant \( b^2 - 4ac \): \[ b^2 = 60^2 = 3600 \] \[ 4ac = 4 \cdot (-0.3) \cdot (-500) = 4 \cdot 0.3 \cdot 500 = 600 \] \[ b^2 - 4ac = 3600 - 600 = 3000 \] Now we can substitute \( a \), \( b \), and the discriminant into the quadratic formula: \[ x = \frac{-60 \pm \sqrt{3000}}{2 \cdot -0.3} \] Calculating \( \sqrt{3000} \): \[ \sqrt{3000} = \sqrt{100 \cdot 30} = 10\sqrt{30} \] Now substituting this back into the formula: \[ x = \frac{-60 \pm 10\sqrt{30}}{-0.6} \] This simplifies to: \[ x = \frac{60 \mp 10\sqrt{30}}{0.6} \] Dividing both terms in the numerator by \( 0.6 \): \[ x = 100 \mp \frac{100\sqrt{30}}{6} \] Calculating \( \frac{100\sqrt{30}}{6} \): \[ \frac{100\sqrt{30}}{6} \approx 40.82 \quad (\text{using } \sqrt{30} \approx 5.477) \] Thus, we have two potential break-even points: \[ x_1 = 100 - 40.82 \approx 59.18 \] \[ x_2 = 100 + 40.82 \approx 140.82 \] So the break-even points are approximately \( x \approx 59.18 \) and \( x \approx 140.82 \). ### Interpretation The break-even points indicate the number of subscribers (in thousands) at which the cable television company neither makes a profit nor incurs a loss. Specifically: - At approximately 59,180 subscribers, the company starts to make a profit after this point. - At approximately 140,820 subscribers, the company will again reach a break-even point, after which it will start to incur losses if the number of subscribers exceeds this point. This information is crucial for the company as it helps them understand the subscriber thresholds they need to maintain to ensure profitability.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the break-even points, we set the profit function \( P(x) \) equal to zero: \[ -0.3x^2 + 60x - 500 = 0 \] To solve this quadratic equation, we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = -0.3 \), \( b = 60 \), and \( c = -500 \). First, calculate the discriminant: \[ b^2 - 4ac = 60^2 - 4(-0.3)(-500) = 3600 - 600 = 3000 \] Now, we can apply the quadratic formula: \[ x = \frac{-60 \pm \sqrt{3000}}{2(-0.3)} = \frac{-60 \pm 10\sqrt{30}}{-0.6} = \frac{60 \mp 10\sqrt{30}}{0.6} \] Calculating the two potential break-even points: \[ x = 100 \mp \frac{10\sqrt{30}}{0.6} \approx 100 \mp 8.16 \] This gives us: \[ x \approx 91.84 \quad \text{or} \quad x \approx 108.16 \] Thus, the break-even points are approximately \( x \approx 91.84 \) thousand subscribers and \( x \approx 108.16 \) thousand subscribers. **Interpretation:** The cable company needs between about 91,840 and 108,160 subscribers to cover its costs and not incur a loss. Below this subscriber range, the company will operate at a loss, while above it, it will begin to make a profit.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad