Pregunta
upstudy study bank question image url

Draw the graph of the function and state the domain and range. \( f(x)=3^{x+2} \)

Ask by Nguyen Wagner. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The graph of \( f(x) = 3^{x+2} \) is an exponential curve that increases rapidly as \( x \) increases. It has a horizontal asymptote at \( y = 0 \) and passes through the points \( (-2, 1) \), \( (0, 9) \), and \( (1, 27) \). The domain is all real numbers, and the range is all positive real numbers. Domain: All real numbers Range: \( (0, \infty) \)

Solución

We are given the function f(x) = 3^(x + 2). Step 1: Graph Description • Recognize that 3 is greater than 1, so the function is exponential and increasing. • The function can be rewritten as f(x) = 3^(x + 2) = 3^x · 3^2 = 9 · 3^x. This indicates that compared to the basic exponential function 3^x, its graph is shifted 2 units to the left and stretched vertically by a factor of 9. • Horizontal asymptote: y = 0 (the graph never touches the x-axis). • Key points:   – At x = -2: f(-2) = 3^(0) = 1. (This is the "starting" point after the horizontal shift.)   – At x = 0:  f(0) = 3^(2) = 9 (the y-intercept).   – At x = 1:  f(1) = 3^(3) = 27.   – At x = -3: f(-3) = 3^(-1) = 1/3. • The graph rises quickly as x increases and gets very close to 0 as x decreases, without ever touching the x-axis. To help you visualize, here’s a rough sketch of what the graph looks like: f(x) │ 30 │ • (1,27) │ • 25 │ • │ • 20 │ • │ • 15 │ • │ • 9 │ • (0,9) │ • 5 │ • │ • 1 │• (–2,1) │• └──────────────────────── x -4 -3 -2 -1 0 1 2 (NOTE: The diagram above is an approximate representation. As x increases to the right, the graph rises steeply, and as x decreases to the left, the graph approaches y = 0 but never touches it.) Step 2: Domain and Range • Domain: Since the exponent can be any real number, the domain is all real numbers, or (–∞, ∞). • Range: Because an exponential function is always positive regardless of x, the range is (0, ∞). Summary: • f(x) = 3^(x + 2) is an exponential function shifted 2 units left and scaled upward by a factor of 9. • Domain: (–∞, ∞) • Range: (0, ∞) This completes the drawing description and the statement of the domain and range for the function.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The graph of the function \( f(x) = 3^{x+2} \) is an exponential curve that rises steeply as x increases. It starts close to the x-axis (but never actually touches it) and ascends towards infinity. The y-intercept occurs at \( f(0) = 3^{0+2} = 9 \), so the graph will pass through the point (0, 9). The domain of \( f(x) \) is all real numbers, expressed as \( (-\infty, \infty) \), since you can plug any real number into the function and get a valid output. The range is all positive real numbers, represented as \( (0, \infty) \), as the function values never touch zero and always rise above it.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad