Pregunta
Find the inverse Laplace transform of the following:
-
-
-
-
-
Ask by Schofield Welch. in the Philippines
Mar 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The inverse Laplace transforms are:
Solución
To find the inverse Laplace transforms of the given functions, we will first factor the denominators where necessary and then apply the appropriate techniques for inverse Laplace transforms.
1.
First, we factor the denominator:
Thus, we can rewrite
:
Next, we can use partial fraction decomposition:
Multiplying through by the denominator:
Setting
:
Setting
:
Thus, we have:
The inverse Laplace transform is:
2.
First, we factor the quadratic:
Thus, we can rewrite
:
Using partial fraction decomposition:
Multiplying through by the denominator:
Setting
:
Setting
:
Setting
:
Thus, we have:
The inverse Laplace transform is:
3.
First, we factor the cubic polynomial:
Thus, we can rewrite
:
Using partial fraction decomposition:
Multiplying through by the denominator:
Setting
:
Setting
:
Setting
:
Thus, we have:
The inverse Laplace transform is:
4.
First, we complete the square for the quadratic:
Thus, we can rewrite
:
The inverse Laplace transform is:
5.
Using partial fraction decomposition:
Multiplying through by the denominator:
Setting
:
Setting
:
Setting
:
Thus, we have:
[
F(s) = \frac{3}{s^{2}} + \frac{2
F(s) = \frac{3}{s^{2}} + \frac{2
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find the inverse Laplace transforms of the given functions, we can use partial fraction decomposition and known inverse transforms from Laplace transform tables. Here are the calculated results:
-
For
:
We first factor the denominator as. Thus, we can write: Solving givesand , leading to: Taking the inverse Laplace transform: -
For
:
We factor. The expression can be decomposed: Solving gives, , . Thus: Taking the inverse Laplace transform: -
For
:
The denominator factors as. Using partial fractions, we can express: After equating and solving for constants, we find. Thus: The inverse Laplace transform gives: -
For
:
We complete the square:. This can be expressed as follows: We can now identify terms:Inverse transforms yield: -
For
:
Here, we can decompose:Solving gives: Taking the inverse transforms gives:[
f(t) = 3 + 3t - 3

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium