Pregunta
upstudy study bank question image url

Find the inverse Laplace transform of the following:

Ask by Schofield Welch. in the Philippines
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inverse Laplace transforms are:

Solución

To find the inverse Laplace transforms of the given functions, we will first factor the denominators where necessary and then apply the appropriate techniques for inverse Laplace transforms.

1.

First, we factor the denominator:
Thus, we can rewrite :
Next, we can use partial fraction decomposition:
Multiplying through by the denominator:
Setting :
Setting :
Thus, we have:
The inverse Laplace transform is:

2.

First, we factor the quadratic:
Thus, we can rewrite :
Using partial fraction decomposition:
Multiplying through by the denominator:
Setting :
Setting :
Setting :
Thus, we have:
The inverse Laplace transform is:

3.

First, we factor the cubic polynomial:
Thus, we can rewrite :
Using partial fraction decomposition:
Multiplying through by the denominator:
Setting :
Setting :
Setting :
Thus, we have:
The inverse Laplace transform is:

4.

First, we complete the square for the quadratic:
Thus, we can rewrite :
The inverse Laplace transform is:

5.

Using partial fraction decomposition:
Multiplying through by the denominator:
Setting :
Setting :
Setting :
Thus, we have:
[
F(s) = \frac{3}{s^{2}} + \frac{2

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the inverse Laplace transforms of the given functions, we can use partial fraction decomposition and known inverse transforms from Laplace transform tables. Here are the calculated results:
  1. For :
    We first factor the denominator as . Thus, we can write:
    Solving gives and , leading to:
    Taking the inverse Laplace transform:
  2. For :
    We factor . The expression can be decomposed:
    Solving gives , , . Thus:
    Taking the inverse Laplace transform:
  3. For :
    The denominator factors as . Using partial fractions, we can express:
    After equating and solving for constants, we find . Thus:
    The inverse Laplace transform gives:
  4. For :
    We complete the square: . This can be expressed as follows:
    We can now identify terms:
    Inverse transforms yield:
  5. For :
    Here, we can decompose:
    Solving gives :
    Taking the inverse transforms gives:
    [
    f(t) = 3 + 3t - 3

preguntas relacionadas

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad