Pregunta
upstudy study bank question image url

For which value(s) of \( k \) will the equation \( x^{2}-5 x-k=0 \) have: \( \begin{array}{lll}\text { (a) equal roots } & \text { (b) real roots } & \text { (c) non-real roots }\end{array} \)

Ask by Mckenzie Huang. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For the equation \( x^{2} - 5x - k = 0 \): - (a) Equal roots when \( k = -\frac{25}{4} \) - (b) Real roots when \( k \geq -\frac{25}{4} \) - (c) Non-real roots when \( k < -\frac{25}{4} \)

Solución

To determine the values of \( k \) for which the quadratic equation \( x^{2}-5x-k=0 \) has equal roots, real roots, and non-real roots, we will use the discriminant of the quadratic equation. The discriminant \( D \) is given by the formula: \[ D = b^2 - 4ac \] For our equation \( x^{2}-5x-k=0 \), we have: - \( a = 1 \) - \( b = -5 \) - \( c = -k \) Thus, the discriminant becomes: \[ D = (-5)^2 - 4(1)(-k) = 25 + 4k \] Now, we will analyze the discriminant for each case: ### (a) Equal Roots For the equation to have equal roots, the discriminant must be equal to zero: \[ D = 0 \implies 25 + 4k = 0 \] Solving for \( k \): \[ 4k = -25 \implies k = -\frac{25}{4} \] ### (b) Real Roots For the equation to have real roots, the discriminant must be greater than or equal to zero: \[ D \geq 0 \implies 25 + 4k \geq 0 \] Solving for \( k \): \[ 4k \geq -25 \implies k \geq -\frac{25}{4} \] ### (c) Non-Real Roots For the equation to have non-real roots, the discriminant must be less than zero: \[ D < 0 \implies 25 + 4k < 0 \] Solving for \( k \): \[ 4k < -25 \implies k < -\frac{25}{4} \] ### Summary of Results - (a) Equal roots: \( k = -\frac{25}{4} \) - (b) Real roots: \( k \geq -\frac{25}{4} \) - (c) Non-real roots: \( k < -\frac{25}{4} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the values of \( k \) for different types of roots in the quadratic equation \( x^{2} - 5x - k = 0 \), we can use the discriminant \( D \), which is given by \( D = b^2 - 4ac \). In this case, \( a = 1 \), \( b = -5 \), and \( c = -k \). 1. **Equal roots**: For the equation to have equal roots, the discriminant must be zero: \[ D = (-5)^2 - 4 \cdot 1 \cdot (-k) = 25 + 4k = 0 \] Solving for \( k \), we find: \[ 4k = -25 \quad \Rightarrow \quad k = -\frac{25}{4} \] 2. **Real roots**: For the equation to have real roots, the discriminant must be greater than or equal to zero: \[ 25 + 4k \geq 0 \] Solving for \( k \), we get: \[ 4k \geq -25 \quad \Rightarrow \quad k \geq -\frac{25}{4} \] 3. **Non-real roots**: For the equation to have non-real roots, the discriminant must be less than zero: \[ 25 + 4k < 0 \] Solving for \( k \), we find: \[ 4k < -25 \quad \Rightarrow \quad k < -\frac{25}{4} \] In summary: - Equal roots occur at \( k = -\frac{25}{4} \). - Real roots occur for \( k \geq -\frac{25}{4} \). - Non-real roots occur for \( k < -\frac{25}{4} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad