Pregunta
upstudy study bank question image url

Find the volume of the solid obtained by rotating the region in the first quadrant bounded by the curves \( x=0, y=1, x=y^{6} \), about the line \( y=1 \). l

Ask by Gray Collins. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{\pi}{28} \).

Solución

To find the volume of the solid obtained by rotating the region in the first quadrant bounded by the curves \( x=0 \), \( y=1 \), and \( x=y^{6} \) about the line \( y=1 \), we can use the method of cylindrical shells. ### Step 1: Identify the region of integration The curves are: - \( x = 0 \) (the y-axis) - \( y = 1 \) (a horizontal line) - \( x = y^6 \) (a curve) To find the intersection points, we set \( y = 1 \) in \( x = y^6 \): \[ x = 1^6 = 1 \] Thus, the region of integration is bounded by \( y = 0 \) to \( y = 1 \) and \( x = y^6 \). ### Step 2: Set up the volume integral Using the method of cylindrical shells, the volume \( V \) is given by the formula: \[ V = 2\pi \int_{a}^{b} (radius)(height) \, dy \] In this case: - The radius is the distance from the line \( y = 1 \) to the curve, which is \( 1 - y \). - The height is given by the function \( x = y^6 \). Thus, the volume integral becomes: \[ V = 2\pi \int_{0}^{1} (1 - y)(y^6) \, dy \] ### Step 3: Simplify the integral Now we simplify the integrand: \[ V = 2\pi \int_{0}^{1} (y^6 - y^7) \, dy \] ### Step 4: Calculate the integral Now we compute the integral: \[ V = 2\pi \left[ \frac{y^7}{7} - \frac{y^8}{8} \right]_{0}^{1} \] Evaluating at the bounds: \[ V = 2\pi \left( \frac{1^7}{7} - \frac{1^8}{8} \right) - 2\pi \left( \frac{0^7}{7} - \frac{0^8}{8} \right) \] \[ = 2\pi \left( \frac{1}{7} - \frac{1}{8} \right) \] ### Step 5: Find a common denominator The common denominator of 7 and 8 is 56: \[ \frac{1}{7} = \frac{8}{56}, \quad \frac{1}{8} = \frac{7}{56} \] Thus, \[ \frac{1}{7} - \frac{1}{8} = \frac{8}{56} - \frac{7}{56} = \frac{1}{56} \] ### Step 6: Final volume calculation Substituting back into the volume expression: \[ V = 2\pi \left( \frac{1}{56} \right) = \frac{2\pi}{56} = \frac{\pi}{28} \] ### Final Answer The volume of the solid obtained by rotating the region about the line \( y=1 \) is: \[ \boxed{\frac{\pi}{28}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of the solid obtained by rotating the region in the first quadrant bounded by \( x=0 \), \( y=1 \), and \( x=y^{6} \) about the line \( y=1 \), we can use the method of washers. First, we'll identify the bounds for \( y \). The curve \( x = y^{6} \) intersects the line \( y = 1 \) at the point (1, 1). Thus, our bounds for \( y \) will be from 0 to 1. The volume \( V \) of the solid can be calculated using the formula for the volume of a solid of revolution: \[ V = \pi \int_{a}^{b} \left[ R(y)^2 - r(y)^2 \right] \, dy \] In this case, our outer radius \( R(y) \) is the distance from the line \( y=1 \) up to the line \( y \), which is \( R(y) = 1 - y \). The inner radius \( r(y) \) is the distance from \( y=1 \) down to the curve defined by \( x = y^{6} \), leading to \( r(y) = 1 - y \). Using this setup, we need to express the outer radius and inner radius in terms of \( y \): - The outer radius \( R(y) = 1 - y \) - The inner radius does not apply since the area below \( y = 1 \) is essentially filled by \( r(y) = 0 \). Thus, the volume becomes: \[ V = \pi \int_{0}^{1} [(1 - y)^2] \, dy \] Calculating the integral: \[ = \pi \int_{0}^{1} (1 - 2y + y^2) \, dy = \pi \left[ y - y^2 + \frac{y^3}{3} \right]_{0}^{1} = \pi \left[ 1 - 1 + \frac{1}{3} \right] - \pi \left[ 0 \right] = \frac{\pi}{3} \] Therefore, the volume of the solid obtained by rotating the region about the line \( y = 1 \) is \[ \frac{\pi}{3} \] cubic units.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad