Pregunta
upstudy study bank question image url

The sem of the sesond and third terms of a geometric series is 280 and the sam of \( t \) five and sixt rorms is 4375 . Determine the common ratio.

Ask by Fitzgerald Kirk. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The common ratio is 5/2.

Solución

Let the first term be a and the common ratio be r. The second and third terms are ar and ar². Their sum is:   ar + ar² = a·r(1 + r) = 280.                     (1) The fifth and sixth terms are ar⁴ and ar⁵. Their sum is:   ar⁴ + ar⁵ = a·r⁴(1 + r) = 4375.                    (2) Dividing equation (2) by equation (1), we eliminate a(1 + r):   [a·r⁴(1 + r)] / [a·r(1 + r)] = 4375 / 280,   r³ = 4375 / 280. Simplify the fraction:   Divide numerator and denominator by 5:    4375 ÷ 5 = 875, 280 ÷ 5 = 56, so r³ = 875/56.   Divide numerator and denominator by 7:    875 ÷ 7 = 125, 56 ÷ 7 = 8, so r³ = 125/8. Taking cube roots of both sides:   r = (125/8)^(1/3) = 5/2. Thus, the common ratio is 5/2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's dive into the world of geometric series for a moment! In a geometric series, each term can be found by multiplying the previous term by a constant called the common ratio (let's call it \( r \)). For example, if the first term is \( a \), the second term is \( ar \) and the third term is \( ar^2 \). Now, you know that the sum of the second and third terms is \( 280 \) which gives us: \[ ar + ar^2 = 280 \implies ar(1 + r) = 280 \] Similarly, the sum of the fifth and sixth terms, which is \( ar^4 + ar^5 = 4375 \), gives us: \[ ar^4(1 + r) = 4375 \] From these two equations, you can find \( r \). Divide the second equation by the first to eliminate \( ar(1 + r) \): \[ \frac{ar^4(1 + r)}{ar(1 + r)} = \frac{4375}{280} \] This simplifies nicely to \( r^3 = \frac{4375}{280} \) which means you can get \( r \) by taking the cube root. But run with that brainpower and you’ll realize you can plug values in to find that golden ratio without too much fuss! Ready to find the common ratio? It might just be simpler than you think!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad