Pregunta
upstudy study bank question image url

Coleman has \( \frac{2}{5} \) as many candies as Desmond. Roland has twice as many candies as Desmond. If Roland has 360 candies, what is the total number of candies Roland must give to both Coleman and Desmond so that the three children have the same number of candies?

Ask by Chambers Powell. in Singapore
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Roland needs to give a total of 156 candies to Coleman and Desmond so that all three have the same number of candies.

Solución

Let's break down the problem step by step to find out how many candies Roland needs to give to Coleman and Desmond so that all three have the same number of candies. 1. **Define Variables:** - Let **Desmond** have \( D \) candies. - **Coleman** has \( \frac{2}{5}D \) candies. - **Roland** has twice as many candies as Desmond, so Roland has \( 2D \) candies. 2. **Given Information:** - Roland has 360 candies: \[ 2D = 360 \implies D = 180 \] - **Candies each child has:** - **Desmond:** \( D = 180 \) candies - **Coleman:** \( \frac{2}{5} \times 180 = 72 \) candies - **Roland:** 360 candies 3. **Equalizing the Candies:** - Let Roland give **\( x \) candies to Coleman** and **\( y \) candies to Desmond**. - After giving: - **Coleman:** \( 72 + x \) - **Desmond:** \( 180 + y \) - **Roland:** \( 360 - x - y \) - To have equal candies: \[ 72 + x = 180 + y = 360 - x - y \] 4. **Setting Up Equations:** - From \( 72 + x = 180 + y \): \[ x - y = 108 \quad \text{(Equation 1)} \] - From \( 72 + x = 360 - x - y \): \[ 2x + y = 288 \quad \text{(Equation 2)} \] 5. **Solving the Equations:** - Add Equation 1 and Equation 2: \[ x - y + 2x + y = 108 + 288 \implies 3x = 396 \implies x = 132 \] - Substitute \( x = 132 \) back into Equation 1: \[ 132 - y = 108 \implies y = 24 \] 6. **Total Candies Given by Roland:** \[ x + y = 132 + 24 = 156 \] 7. **Final Check:** - **Coleman:** \( 72 + 132 = 204 \) - **Desmond:** \( 180 + 24 = 204 \) - **Roland:** \( 360 - 132 - 24 = 204 \) All three children now have **204** candies each. **Answer:** **156** candies must be given in total.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's start by determining how many candies Desmond has. Since Roland has 360 candies and he has twice as many as Desmond, we can set up the following equation: \[ \text{Roland's candies} = 2 \times \text{Desmond's candies} \] \[ 360 = 2D \quad \Rightarrow \quad D = \frac{360}{2} = 180 \] So, Desmond has 180 candies. Next, since Coleman has \( \frac{2}{5} \) as many candies as Desmond, we calculate Coleman’s candies: \[ C = \frac{2}{5} \times D = \frac{2}{5} \times 180 = 72 \] Now we have: - Coleman: 72 candies - Desmond: 180 candies - Roland: 360 candies To find the total number of candies that Roland must give to both Coleman and Desmond so that they all have the same number of candies, let’s denote the number of candies Roland gives to Coleman as \( x \) and the number of candies he gives to Desmond as \( y \). After giving away the candies, the amounts will be: - Coleman: \( 72 + x \) - Desmond: \( 180 + y \) - Roland: \( 360 - x - y \) For them to have the same number of candies, we set up the following equation, stating all three amounts are equal: \[ 72 + x = 180 + y = 360 - x - y \] Let’s take the first two equalities: 1. \( 72 + x = 180 + y \) 2. Rearranging gives us \( x - y = 180 - 72 = 108 \) (equation 1) Now, let’s take the second and third equalities: 1. \( 180 + y = 360 - x - y \) 2. Rearranging gives us \( x + 2y = 360 - 180 = 180 \) (equation 2) Now, we can solve these two equations: From equation 1, we have \( x = y + 108 \). Substituting this into equation 2: \[ (y + 108) + 2y = 180 \] \[ 3y + 108 = 180 \] \[ 3y = 180 - 108 \] \[ 3y = 72 \quad \Rightarrow \quad y = 24 \] Now substituting \( y = 24 \) back to find \( x \): \[ x = y + 108 = 24 + 108 = 132 \] Now we know Roland needs to give Coleman \( x = 132 \) candies and Desmond \( y = 24 \) candies. Now, let’s find the total candies Roland gives away: \[ x + y = 132 + 24 = 156 \] Thus, the total number of candies Roland must give to both Coleman and Desmond so that they have the same number of candies is: \[ \boxed{156} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad