Pregunta
upstudy study bank question image url

QUESTION Find the optimal solution to the Linear Programming (LP) Problem below, using Simplex Algorithm method: Maximize \[ \begin{array}{l}\pi=12 x_{1}+16 x_{2} \\ \text { subject to: } \\ \qquad \begin{array}{l}10 x_{1}+20 x_{2} \leq 120 \\ 8 x_{1}+8 x_{2} \leq 80\end{array} \\ \quad \text { where } x_{1}, x_{2}>0\end{array} \]

Ask by Cross Harper. in Ghana
Feb 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The optimal solution is \( x_1 = 8 \) and \( x_2 = 2 \), with the maximum value of \( \pi = 128 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To solve this Linear Programming problem using the Simplex Algorithm, let's first convert the constraints into equations by introducing slack variables \( s_1 \) and \( s_2 \): 1. \( 10x_1 + 20x_2 + s_1 = 120 \) 2. \( 8x_1 + 8x_2 + s_2 = 80 \) Now we can write the objective function in its standard form, accounting for the slack variables: \[ \text{Maximize } Z = 12x_1 + 16x_2 + 0s_1 + 0s_2 \] The Simplex tableau is constructed based on the coefficients from the objective function and the constraints, and then we perform iterations to maximize the objective. After running through the Simplex iterations, you will find the optimal solution at the corner point (intersection of constraints), leading you to values of \( x_1 \) and \( x_2 \) which maximizes \( Z \). The optimal values turn out to be \( x_1 = 0 \) and \( x_2 = 6 \), giving us \( Z = 96 \). To verify, plug these back into the original constraints: 1. \( 10(0) + 20(6) = 120 \) (valid) 2. \( 8(0) + 8(6) = 48 \leq 80 \) (valid) Thus, the solution checks out! The Simplex algorithm, developed in the 1940s by George Dantzig, revolutionized operational research by providing a systematic method for solving LP problems, which were previously tackled through trial and error. Today, it remains a cornerstone in various fields such as economics, engineering, and logistics, enabling better resource allocation and scheduling. If you want to dive deeper into linear programming concepts, consider books like "Operations Research: An Introduction" by Taha or "Linear Programming" by Vanderbei. Websites with free resources like Khan Academy and Coursera also offer interactive courses that guide you through practical LP applications and strategies for using the Simplex method effectively!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad