13. Which function will not approach 0 as a increases? a. \( f(x)=3 \cdot\left(\frac{1}{8}\right)^{3} \) b. \( f(x)=5 \cdot\left(\frac{s}{4}\right)^{3} \) c. \( f(x)=2 \cdot\left(\frac{1}{2}\right)^{3} \) d. \( f(x)=4 \cdot 5^{x} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
The function that will not approach 0 as \( x \) increases is \( f(x)=4 \cdot 5^{x} \). This is because as \( x \) increases, \( 5^{x} \) grows exponentially, causing the value of the function to rise indefinitely rather than diminish. In contrast, the other functions involve bases less than 1 raised to the power of \( x \), which leads them towards 0 as \( x \) becomes large. For example, functions with bases like \( \frac{1}{8} \), \( \frac{s}{4} \), and \( \frac{1}{2} \) all exhibit decay behavior, yielding values that approach 0.
