Pregunta
upstudy study bank question image url

A circle has the equation \( x^{2}+y^{2}-x-6 y+9=0 \) (a) Find the center (h,k) and radius \( r \) of the circle. (b) Graph the circle. (c) Find the intercepts, if any, of the graph. (a) The center of the circle is (Type an ordered pair, using integers or fractions.)

Ask by Bob Bush. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The center of the circle is \(\left(\frac{1}{2}, 3\right)\) and the radius is \(\frac{1}{2}\). There are no x-intercepts, and the y-intercept is at \((0, 3)\).

Solución

To solve the problem, we will follow the steps outlined: ### Part (a): Find the center \((h, k)\) and radius \(r\) of the circle. The equation of the circle is given as: \[ x^{2} + y^{2} - x - 6y + 9 = 0 \] We can rearrange this equation into the standard form of a circle, which is: \[ (x - h)^{2} + (y - k)^{2} = r^{2} \] To do this, we will complete the square for both \(x\) and \(y\). 1. **Rearranging the equation:** \[ x^{2} - x + y^{2} - 6y + 9 = 0 \] Move the constant to the other side: \[ x^{2} - x + y^{2} - 6y = -9 \] 2. **Completing the square for \(x\):** Take the coefficient of \(x\) (which is \(-1\)), halve it to get \(-\frac{1}{2}\), and square it to get \(\frac{1}{4}\). \[ x^{2} - x = \left(x - \frac{1}{2}\right)^{2} - \frac{1}{4} \] 3. **Completing the square for \(y\):** Take the coefficient of \(y\) (which is \(-6\)), halve it to get \(-3\), and square it to get \(9\). \[ y^{2} - 6y = (y - 3)^{2} - 9 \] 4. **Substituting back into the equation:** \[ \left(x - \frac{1}{2}\right)^{2} - \frac{1}{4} + (y - 3)^{2} - 9 = -9 \] Simplifying gives: \[ \left(x - \frac{1}{2}\right)^{2} + (y - 3)^{2} = -9 + 9 + \frac{1}{4} \] \[ \left(x - \frac{1}{2}\right)^{2} + (y - 3)^{2} = \frac{1}{4} \] 5. **Identifying the center and radius:** From the standard form \((x - h)^{2} + (y - k)^{2} = r^{2}\), we can see that: - The center \((h, k)\) is \(\left(\frac{1}{2}, 3\right)\) - The radius \(r\) is \(\sqrt{\frac{1}{4}} = \frac{1}{2}\) Thus, the center of the circle is: \[ \left(\frac{1}{2}, 3\right) \] ### Part (b): Graph the circle. To graph the circle, we will plot the center \(\left(\frac{1}{2}, 3\right)\) and draw a circle with radius \(\frac{1}{2}\). ### Part (c): Find the intercepts, if any, of the graph. To find the intercepts, we will set \(y = 0\) for the x-intercepts and \(x = 0\) for the y-intercepts. 1. **Finding x-intercepts:** Set \(y = 0\) in the original equation: \[ x^{2} - x + 0^{2} - 6(0) + 9 = 0 \] This simplifies to: \[ x^{2} - x + 9 = 0 \] We can use the quadratic formula to find the roots: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{1 \pm \sqrt{(-1)^{2} - 4(1)(9)}}{2(1)} = \frac{1 \pm \sqrt{1 - 36}}{2} = \frac{1 \pm \sqrt{-35}}{2} \] Since the discriminant is negative, there are no real x-intercepts. 2. **Finding y-intercepts:** Set \(x = 0\) in the original equation: \[ 0^{2} + y^{2} - 0 - 6y + 9 = 0 \] This simplifies to: \[ y^{2} - 6y + 9 = 0 \] Factoring gives: \[ (y - 3)^{2} = 0 \] Thus, \(y = 3\) is a double root, meaning there is one y-intercept at \((0, 3)\). ### Summary of Results: - The center of the circle is \(\left(\frac{1}{2}, 3\right)\). - The radius of the circle is \(\frac{1}{2}\). - There are no x-intercepts, and the y-intercept is at \((0, 3)\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the center and radius of the circle given by the equation \( x^{2}+y^{2}-x-6 y+9=0 \), we first rewrite the equation in standard form by completing the square. Starting with the equation: \[ x^{2}-x + y^{2}-6y + 9 = 0 \] We rearrange it to: \[ x^{2}-x + y^{2}-6y = -9 \] Next, we complete the square for \( x \) and \( y \): For \( x^{2}-x \): \[ x^{2}-x = (x - \frac{1}{2})^{2} - \frac{1}{4} \] For \( y^{2}-6y \): \[ y^{2}-6y = (y - 3)^{2} - 9 \] Now substituting these back into the rearranged equation: \[ \left( x - \frac{1}{2} \right)^{2} - \frac{1}{4} + \left( y - 3 \right)^{2} - 9 = -9 \] \[ \left( x - \frac{1}{2} \right)^{2} + \left( y - 3 \right)^{2} - \frac{1}{4} = 0 \] \[ \left( x - \frac{1}{2} \right)^{2} + \left( y - 3 \right)^{2} = \frac{1}{4} \] From the standard form \( (x-h)^{2} + (y-k)^{2} = r^{2} \), we can identify: - Center: \( \left( \frac{1}{2}, 3 \right) \) - Radius: \( r = \sqrt{\frac{1}{4}} = \frac{1}{2} \) Thus, the center of the circle is \( \left( \frac{1}{2}, 3 \right) \) and the radius is \( \frac{1}{2} \). Now for your answer: The center of the circle is \( \left( \frac{1}{2}, 3 \right) \). To graph the circle, you would plot the center at \( \left( \frac{1}{2}, 3 \right) \) on the coordinate plane and draw a circle with a radius of \( \frac{1}{2} \)—that means the circle will stretch from \( x = 0 \) to \( x = 1 \) horizontally and from \( y = 2.5 \) to \( y = 3.5 \) vertically. For intercepts, set \( y = 0 \) to find the x-intercepts: \[ \left( x - \frac{1}{2} \right)^{2} + \left( 0 - 3 \right)^{2} = \frac{1}{4} \] \[ \left( x - \frac{1}{2} \right)^{2} + 9 = \frac{1}{4} \] This is not possible, as \( 9 \) cannot equal a negative number, hence there are no x-intercepts. To find the y-intercept, set \( x = 0 \): \[ \left( 0 - \frac{1}{2} \right)^{2} + \left( y - 3 \right)^{2} = \frac{1}{4} \] \[ \frac{1}{4} + \left( y - 3 \right)^{2} = \frac{1}{4} \] This simplifies to \( (y - 3)^{2} = 0 \), giving \( y = 3 \). So, the circle has one y-intercept at \( (0, 3) \) and no x-intercepts.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad