Pregunta
upstudy study bank question image url

3.2. Without using a calculator, simplify: \( \cos 20^{\circ} \cos 320^{\circ}-\sin 160^{\circ} \sin 40^{\circ} \)

Ask by Ford Salazar. in South Africa
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified value of the expression is \( \frac{1}{2} \).

Solución

To simplify the expression   cos 20° · cos 320° – sin 160° · sin 40°, first notice that cos 320° can be rewritten using the cosine of a complementary angle:   cos 320° = cos (360° – 40°) = cos 40°. Also, recognize that sin 160° is equivalent to sin 20° because   sin 160° = sin (180° – 20°) = sin 20°. Substituting these into the expression gives:   cos 20° · cos 40° – sin 20° · sin 40°. Now, use the cosine addition formula, which states:   cos(A + B) = cos A · cos B – sin A · sin B. Here, take A = 20° and B = 40°. Thus:   cos(20° + 40°) = cos 20° · cos 40° – sin 20° · sin 40°. Since 20° + 40° = 60°, we have:   cos 60° = cos(20° + 40°). And we know:   cos 60° = ½. Therefore, the simplified value of the original expression is ½.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify \( \cos 20^{\circ} \cos 320^{\circ}-\sin 160^{\circ} \sin 40^{\circ} \), we can use the cosine angle subtraction identity. First, note that \( \cos 320^{\circ} = \cos(360^{\circ} - 40^{\circ}) = \cos 40^{\circ} \). Therefore, the expression becomes: \[ \cos 20^{\circ} \cos 40^{\circ} - \sin 160^{\circ} \sin 40^{\circ} \] Next, we recognize that \( \sin 160^{\circ} = \sin(180^{\circ} - 20^{\circ}) = \sin 20^{\circ} \). Thus, we can rewrite the expression as: \[ \cos 20^{\circ} \cos 40^{\circ} - \sin 20^{\circ} \sin 40^{\circ} \] Now, we can apply the cosine subtraction formula: \[ \cos A \cos B - \sin A \sin B = \cos(A + B) \] By setting \( A = 20^{\circ} \) and \( B = 40^{\circ} \), we get: \[ \cos(20^{\circ} + 40^{\circ}) = \cos 60^{\circ} \] Since \( \cos 60^{\circ} = \frac{1}{2} \), the original expression simplifies to: \[ \frac{1}{2} \] Therefore, the final simplified result is: \[ \boxed{\frac{1}{2}} \]

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad