Pregunta
upstudy study bank question image url

Compound Interest Challenge You have been given \( \$ 1,000 \) to invest for 5 years. Your goal is to maximize your returns using compound interest. *Investment Options* 1. *High-Yield Savings Account*: 4\% annual interest rate, compounded monthly 2. *Certificate of Deposit (CD)*: 5\% annual interest rate, compounded quarterly 3. *Stock Market Investment*: 7\% annual interest rate, compounded annually *Questions* 1. Calculate the future value of each investment option after

Ask by Chadwick Graham. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 5 years: - High-Yield Savings Account: \$1,221.00 - Certificate of Deposit (CD): \$1,282.04 - Stock Market Investment: \$1,402.55 The Stock Market Investment offers the highest return.

Solución

To calculate the future value of each investment option using compound interest, we can use the formula: \[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( FV \) = future value of the investment - \( P \) = principal amount (initial investment) - \( r \) = annual interest rate (decimal) - \( n \) = number of times interest is compounded per year - \( t \) = number of years the money is invested Let's calculate the future value for each investment option: 1. **High-Yield Savings Account**: - \( P = 1000 \) - \( r = 0.04 \) - \( n = 12 \) (monthly) - \( t = 5 \) 2. **Certificate of Deposit (CD)**: - \( P = 1000 \) - \( r = 0.05 \) - \( n = 4 \) (quarterly) - \( t = 5 \) 3. **Stock Market Investment**: - \( P = 1000 \) - \( r = 0.07 \) - \( n = 1 \) (annually) - \( t = 5 \) Now, I will calculate the future value for each option. Calculate the value by following steps: - step0: Calculate: \(1000\left(1+\frac{0.07}{1}\right)^{1\times 5}\) - step1: Divide the terms: \(1000\left(1+\frac{7}{100}\right)^{1\times 5}\) - step2: Add the numbers: \(1000\left(\frac{107}{100}\right)^{1\times 5}\) - step3: Calculate: \(1000\left(\frac{107}{100}\right)^{5}\) - step4: Simplify: \(1000\times \frac{107^{5}}{100^{5}}\) - step5: Rewrite the expression: \(10^{3}\times \frac{107^{5}}{10^{10}}\) - step6: Reduce the numbers: \(1\times \frac{107^{5}}{10^{7}}\) - step7: Multiply: \(\frac{107^{5}}{10^{7}}\) Calculate or simplify the expression \( 1000 * (1 + 0.04 / 12)^(12 * 5) \). Calculate the value by following steps: - step0: Calculate: \(1000\left(1+\frac{0.04}{12}\right)^{12\times 5}\) - step1: Divide the terms: \(1000\left(1+\frac{1}{300}\right)^{12\times 5}\) - step2: Add the numbers: \(1000\left(\frac{301}{300}\right)^{12\times 5}\) - step3: Multiply the numbers: \(1000\left(\frac{301}{300}\right)^{60}\) - step4: Simplify: \(1000\times \frac{301^{60}}{300^{60}}\) - step5: Rewrite the expression: \(1000\times \frac{301^{60}}{100^{60}\times 3^{60}}\) - step6: Rewrite the expression: \(10^{3}\times \frac{301^{60}}{10^{120}\times 3^{60}}\) - step7: Reduce the numbers: \(1\times \frac{301^{60}}{10^{117}\times 3^{60}}\) - step8: Multiply the fractions: \(\frac{301^{60}}{10^{117}\times 3^{60}}\) Calculate or simplify the expression \( 1000 * (1 + 0.05 / 4)^(4 * 5) \). Calculate the value by following steps: - step0: Calculate: \(1000\left(1+\frac{0.05}{4}\right)^{4\times 5}\) - step1: Divide the terms: \(1000\left(1+\frac{1}{80}\right)^{4\times 5}\) - step2: Add the numbers: \(1000\left(\frac{81}{80}\right)^{4\times 5}\) - step3: Multiply the numbers: \(1000\left(\frac{81}{80}\right)^{20}\) - step4: Simplify: \(1000\times \frac{81^{20}}{80^{20}}\) - step5: Rewrite the expression: \(40\times 25\times \frac{81^{20}}{80^{20}}\) - step6: Rewrite the expression: \(40\times 25\times \frac{81^{20}}{40^{20}\times 2^{20}}\) - step7: Reduce the numbers: \(25\times \frac{81^{20}}{40^{19}\times 2^{20}}\) - step8: Rewrite the expression: \(25\times \frac{81^{20}}{5^{19}\times 8^{19}\times 2^{20}}\) - step9: Rewrite the expression: \(5^{2}\times \frac{81^{20}}{5^{19}\times 8^{19}\times 2^{20}}\) - step10: Reduce the numbers: \(1\times \frac{81^{20}}{5^{17}\times 8^{19}\times 2^{20}}\) - step11: Multiply the fractions: \(\frac{81^{20}}{5^{17}\times 2^{77}}\) Now, let's summarize the future values for each investment option after 5 years: 1. **High-Yield Savings Account**: \[ FV \approx 1220.996594 \] 2. **Certificate of Deposit (CD)**: \[ FV \approx 1282.037232 \] 3. **Stock Market Investment**: \[ FV \approx 1402.5517307 \] ### Conclusion: - The future value of the High-Yield Savings Account is approximately **$1221.00**. - The future value of the Certificate of Deposit (CD) is approximately **$1282.04**. - The future value of the Stock Market Investment is approximately **$1402.55**. Among the three options, the Stock Market Investment yields the highest future value after 5 years.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To paint a clearer picture of compound interest, let's explore how these options would play out over 5 years. For the High-Yield Savings Account, using the formula for compound interest \( A = P \times (1 + \frac{r}{n})^{nt} \), you'll find that your investment would grow to about \$1,221.39. In the case of the CD, it will yield approximately \$1,276.28, while investing in the stock market could take you to around \$1,402.55. Now, if you're thinking about how these investments actually play out in real life, remember that the stock market can bring higher returns but with more risk! Savings accounts and CDs are safer, perfect for a secure nest egg, but they probably won’t skyrocket your wealth. So, as exciting as it sounds to chase high returns, balance is the name of the game for a savvy investor!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad