Responder
After 5 years:
- High-Yield Savings Account: \$1,221.00
- Certificate of Deposit (CD): \$1,282.04
- Stock Market Investment: \$1,402.55
The Stock Market Investment offers the highest return.
Solución
To calculate the future value of each investment option using compound interest, we can use the formula:
\[
FV = P \left(1 + \frac{r}{n}\right)^{nt}
\]
Where:
- \( FV \) = future value of the investment
- \( P \) = principal amount (initial investment)
- \( r \) = annual interest rate (decimal)
- \( n \) = number of times interest is compounded per year
- \( t \) = number of years the money is invested
Let's calculate the future value for each investment option:
1. **High-Yield Savings Account**:
- \( P = 1000 \)
- \( r = 0.04 \)
- \( n = 12 \) (monthly)
- \( t = 5 \)
2. **Certificate of Deposit (CD)**:
- \( P = 1000 \)
- \( r = 0.05 \)
- \( n = 4 \) (quarterly)
- \( t = 5 \)
3. **Stock Market Investment**:
- \( P = 1000 \)
- \( r = 0.07 \)
- \( n = 1 \) (annually)
- \( t = 5 \)
Now, I will calculate the future value for each option.
Calculate the value by following steps:
- step0: Calculate:
\(1000\left(1+\frac{0.07}{1}\right)^{1\times 5}\)
- step1: Divide the terms:
\(1000\left(1+\frac{7}{100}\right)^{1\times 5}\)
- step2: Add the numbers:
\(1000\left(\frac{107}{100}\right)^{1\times 5}\)
- step3: Calculate:
\(1000\left(\frac{107}{100}\right)^{5}\)
- step4: Simplify:
\(1000\times \frac{107^{5}}{100^{5}}\)
- step5: Rewrite the expression:
\(10^{3}\times \frac{107^{5}}{10^{10}}\)
- step6: Reduce the numbers:
\(1\times \frac{107^{5}}{10^{7}}\)
- step7: Multiply:
\(\frac{107^{5}}{10^{7}}\)
Calculate or simplify the expression \( 1000 * (1 + 0.04 / 12)^(12 * 5) \).
Calculate the value by following steps:
- step0: Calculate:
\(1000\left(1+\frac{0.04}{12}\right)^{12\times 5}\)
- step1: Divide the terms:
\(1000\left(1+\frac{1}{300}\right)^{12\times 5}\)
- step2: Add the numbers:
\(1000\left(\frac{301}{300}\right)^{12\times 5}\)
- step3: Multiply the numbers:
\(1000\left(\frac{301}{300}\right)^{60}\)
- step4: Simplify:
\(1000\times \frac{301^{60}}{300^{60}}\)
- step5: Rewrite the expression:
\(1000\times \frac{301^{60}}{100^{60}\times 3^{60}}\)
- step6: Rewrite the expression:
\(10^{3}\times \frac{301^{60}}{10^{120}\times 3^{60}}\)
- step7: Reduce the numbers:
\(1\times \frac{301^{60}}{10^{117}\times 3^{60}}\)
- step8: Multiply the fractions:
\(\frac{301^{60}}{10^{117}\times 3^{60}}\)
Calculate or simplify the expression \( 1000 * (1 + 0.05 / 4)^(4 * 5) \).
Calculate the value by following steps:
- step0: Calculate:
\(1000\left(1+\frac{0.05}{4}\right)^{4\times 5}\)
- step1: Divide the terms:
\(1000\left(1+\frac{1}{80}\right)^{4\times 5}\)
- step2: Add the numbers:
\(1000\left(\frac{81}{80}\right)^{4\times 5}\)
- step3: Multiply the numbers:
\(1000\left(\frac{81}{80}\right)^{20}\)
- step4: Simplify:
\(1000\times \frac{81^{20}}{80^{20}}\)
- step5: Rewrite the expression:
\(40\times 25\times \frac{81^{20}}{80^{20}}\)
- step6: Rewrite the expression:
\(40\times 25\times \frac{81^{20}}{40^{20}\times 2^{20}}\)
- step7: Reduce the numbers:
\(25\times \frac{81^{20}}{40^{19}\times 2^{20}}\)
- step8: Rewrite the expression:
\(25\times \frac{81^{20}}{5^{19}\times 8^{19}\times 2^{20}}\)
- step9: Rewrite the expression:
\(5^{2}\times \frac{81^{20}}{5^{19}\times 8^{19}\times 2^{20}}\)
- step10: Reduce the numbers:
\(1\times \frac{81^{20}}{5^{17}\times 8^{19}\times 2^{20}}\)
- step11: Multiply the fractions:
\(\frac{81^{20}}{5^{17}\times 2^{77}}\)
Now, let's summarize the future values for each investment option after 5 years:
1. **High-Yield Savings Account**:
\[
FV \approx 1220.996594
\]
2. **Certificate of Deposit (CD)**:
\[
FV \approx 1282.037232
\]
3. **Stock Market Investment**:
\[
FV \approx 1402.5517307
\]
### Conclusion:
- The future value of the High-Yield Savings Account is approximately **$1221.00**.
- The future value of the Certificate of Deposit (CD) is approximately **$1282.04**.
- The future value of the Stock Market Investment is approximately **$1402.55**.
Among the three options, the Stock Market Investment yields the highest future value after 5 years.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución