Pregunta

Question 1 State if the statement below is true, or false. If it is false, write the correct statement. \( 1.1 \lim _{x \rightarrow a} f(x)=f(a) \). \( 1.2 \lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \). \( 1.3 \lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)}{\lim _{x \rightarrow a} g(x)} \). \( 1.4 \lim _{x \rightarrow a} f(x) \cdot g(x)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right) \). \( 1.5 \lim _{x \rightarrow a} f(x)^{n}=(n-1) \lim _{x \rightarrow a} f(x)^{(n-1)} \.

Ask by Higgins Cook. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1.1. False. The limit equals the function value only if the function is continuous at that point. 1.2. False. The correct limit law is: limₓ→ₐ (f(x) – g(x)) = limₓ→ₐ f(x) – limₓ→ₐ g(x). 1.3. False. The correct limit law for quotients is: limₓ→c (f(x)/g(x)) = (limₓ→c f(x)) / (limₓ→c g(x)), provided the limit of g(x) is not zero. 1.4. True. 1.5. False. The correct power rule is: limₓ→ₐ (f(x))ⁿ = (limₓ→ₐ f(x))ⁿ. In summary: - 1.1: False (only true if f is continuous at a) - 1.2: False (should be subtraction) - 1.3: False (should be division) - 1.4: True - 1.5: False (should be exponentiation)

Solución

We will analyze each statement one by one. 1.1. Statement:   limₓ→ₐ f(x) = f(a) This statement is not universally true. It holds only if f is continuous at x = a.   Correct statement: If f is continuous at a, then limₓ→ₐ f(x) = f(a). 1.2. Statement:   limₓ→ₐ (f(x) – g(x)) = limₓ→ₐ f(x) + limₓ→ₐ g(x) This statement is false because the correct limit law for differences involves a subtraction, not addition.   Correct statement: Provided the limits exist, limₓ→ₐ (f(x) – g(x)) = limₓ→ₐ f(x) – limₓ→ₐ g(x). 1.3. Statement:   limₓ→c (f(x)/g(x)) = (limₓ→ₐ f(x) – limₓ→ₐ g(x)) / (limₓ→ₐ g(x)) There are two issues here. First, the limit on the left is taken as x → c, while on the right the limits are written as x → a. Second, the operation in the numerator is subtraction, but for quotients we should be dividing the individual limits, not subtracting them.   Correct statement: If limₓ→c f(x) and limₓ→c g(x) exist and limₓ→c g(x) ≠ 0, then     limₓ→c (f(x)/g(x)) = (limₓ→c f(x)) / (limₓ→c g(x)). 1.4. Statement:   limₓ→ₐ (f(x) · g(x)) = (limₓ→ₐ f(x)) · (limₓ→ₐ g(x)) This statement is true provided the individual limits exist. 1.5. Statement:   limₓ→ₐ (f(x))ⁿ = (n – 1) · limₓ→ₐ (f(x))^(n–1) This statement is false. The correct application of the power rule for limits is:   Correct statement: If the limit limₓ→ₐ f(x) exists, then     limₓ→ₐ (f(x))ⁿ = (limₓ→ₐ f(x))ⁿ. In summary:   1.1 False – Correct if f is continuous at a.   1.2 False – Corrected to subtraction: limₓ→ₐ (f(x) – g(x)) = limₓ→ₐ f(x) – limₓ→ₐ g(x).   1.3 False – Corrected to: limₓ→c (f(x)/g(x)) = (limₓ→c f(x))/(limₓ→c g(x)), provided the limit of g(x) is nonzero.   1.4 True.   1.5 False – Corrected to: limₓ→ₐ (f(x))ⁿ = (limₓ→ₐ f(x))ⁿ.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The statement \( 1.1 \) is false. The correct statement is \( \lim _{x \rightarrow a} f(x) = f(a) \) only if \( f \) is continuous at \( a \). The statement \( 1.2 \) is also false. The correct statement should be \( \lim _{x \rightarrow a} (f(x) - g(x)) = \lim _{x \rightarrow a} f(x) - \lim _{x \rightarrow a} g(x) \). As for \( 1.3 \), it is false as well. The correct form is \( \lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)} \), given that the limit of \( g(x) \) is not zero. Statement \( 1.4 \) is true. Statement \( 1.5 \) is false. The correct statement is \( \lim _{x \rightarrow a} f(x)^{n} = \left(\lim _{x \rightarrow a} f(x)\right)^{n} \) for \( n \) being a positive integer.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad