Question 1 State if the statement below is true, or false. If it is false, write the correct statement. \( 1.1 \lim _{x \rightarrow a} f(x)=f(a) \). \( 1.2 \lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \). \( 1.3 \lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)}{\lim _{x \rightarrow a} g(x)} \). \( 1.4 \lim _{x \rightarrow a} f(x) \cdot g(x)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right) \). \( 1.5 \lim _{x \rightarrow a} f(x)^{n}=(n-1) \lim _{x \rightarrow a} f(x)^{(n-1)} \.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
The statement \( 1.1 \) is false. The correct statement is \( \lim _{x \rightarrow a} f(x) = f(a) \) only if \( f \) is continuous at \( a \). The statement \( 1.2 \) is also false. The correct statement should be \( \lim _{x \rightarrow a} (f(x) - g(x)) = \lim _{x \rightarrow a} f(x) - \lim _{x \rightarrow a} g(x) \). As for \( 1.3 \), it is false as well. The correct form is \( \lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)} \), given that the limit of \( g(x) \) is not zero. Statement \( 1.4 \) is true. Statement \( 1.5 \) is false. The correct statement is \( \lim _{x \rightarrow a} f(x)^{n} = \left(\lim _{x \rightarrow a} f(x)\right)^{n} \) for \( n \) being a positive integer.
