Pregunta
upstudy study bank question image url

5) \( \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x) \)

Ask by Herrera Chang. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the equation is all real numbers except integer multiples of π.

Solución

Solve the equation \( \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x) \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=4\cot\left(x\right)\csc\left(x\right)\) - step1: Find the domain: \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=4\cot\left(x\right)\csc\left(x\right),x\neq k\pi ,k \in \mathbb{Z}\) - step2: Rewrite the expression: \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=4\times \frac{\cos\left(x\right)}{\sin\left(x\right)}\times \frac{1}{\sin\left(x\right)}\) - step3: Simplify: \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=\frac{4\cos\left(x\right)}{\sin^{2}\left(x\right)}\) - step4: Multiply both sides of the equation by LCD: \(\left(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}\right)\left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\sin^{2}\left(x\right)=\frac{4\cos\left(x\right)}{\sin^{2}\left(x\right)}\times \left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\sin^{2}\left(x\right)\) - step5: Simplify the equation: \(\left(\cos\left(x\right)-1\right)\left(\cos\left(x\right)-1\right)\sin^{2}\left(x\right)+\left(-1-\cos\left(x\right)\right)\left(1+\cos\left(x\right)\right)\sin^{2}\left(x\right)=4\cos\left(x\right)\left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\) - step6: Calculate: \(\left(\cos^{2}\left(x\right)-2\cos\left(x\right)+1\right)\sin^{2}\left(x\right)+\left(-1-2\cos\left(x\right)-\cos^{2}\left(x\right)\right)\sin^{2}\left(x\right)=4\cos\left(x\right)\left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\) - step7: Rewrite the expression: \(-4\cos\left(x\right)+4\cos^{3}\left(x\right)=-4\cos\left(x\right)+4\cos^{3}\left(x\right)\) - step8: Cancel equal terms: \(0=0\) - step9: The statement is true: \(x \in \mathbb{R}\) - step10: Check if the solution is in the defined range: \(x \in \mathbb{R},x\neq k\pi ,k \in \mathbb{Z}\) - step11: Find the intersection: \(x\neq k\pi ,k \in \mathbb{Z}\) The solution to the equation \( \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x) \) is \( x \neq k\pi, k \in \mathbb{Z} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \[ \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x), \] let's simplify the left-hand side first. 1. **Common Denominator:** The common denominator for the two fractions on the left is \[ (1+\cos(x))(\cos(x)-1). \] 2. **Rewrite Each Fraction:** Now rewriting each fraction, we have: \[ \frac{(\cos(x) - 1)^2 - (1 + \cos(x))^2}{(1 + \cos(x))(\cos(x) - 1)}. \] 3. **Expand Both Numerators:** Expand \((\cos(x) - 1)^2\): \[ (\cos(x) - 1)^2 = \cos^2(x) - 2\cos(x) + 1. \] Expand \((1 + \cos(x))^2\): \[ (1 + \cos(x))^2 = 1 + 2\cos(x) + \cos^2(x). \] 4. **Combine the Numerators:** Subtract the second expansion from the first: \[ (\cos^2(x) - 2\cos(x) + 1) - (1 + 2\cos(x) + \cos^2(x)). \] This simplifies to: \[ -4\cos(x). \] 5. **Substituting Back:** So we have \[ \frac{-4\cos(x)}{(1 + \cos(x))(\cos(x) - 1)} = 4 \cot(x) \csc(x). \] 6. **Cross Multiply:** Now we cross-multiply: \[ -4\cos(x) = 4 \cot(x) \csc(x) (1+\cos(x))(\cos(x)-1). \] 7. **Simplifying Right-Hand Side:** Recall that \(\cot(x) = \frac{\cos(x)}{\sin(x)}\) and \(\csc(x) = \frac{1}{\sin(x)}\), so: \[ \cot(x) \csc(x) = \frac{\cos(x)}{\sin^2(x)}, \] which yields: \[ 4 \frac{\cos(x)}{\sin^2(x)} (1+\cos(x))(\cos(x)-1). \] Now set both sides equal. Notice that you have \(-4\) on the left, emphasizing you can simplify things if you group like terms. At this point, the solution involves working through the algebra to isolate \(x\) or manipulate the trigonometric expressions. Given the complexity, this is a mathematician’s bread and butter! You’ll solve for specific angles of \(x\) based on the periodic nature of the trigonometric functions in the equation, and check against the unit circle to discover solutions neatly wrapped in degrees or radians. Do you need help with further steps, or specific angles?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad