Pregunta
\( \mathrm{R}(\mathrm{x})=\frac{7 \mathrm{x}}{\mathrm{x}+7} \) Find the vertical asymptotes. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. The function has one vertical asymptote, (Type an equation. Use integers or fractions for any numbers in the equation.) B. The function has two vertical asymptotes. The leftmost asymptote is \( \square \) and the rightmost asymptote is \( \square \). (Type equations. Use integers or fractions for any numbers in the equations.) C. The function has no vertical asymptote.
Ask by Turner Fitzgerald. in the United States
Feb 17,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The function has one vertical asymptote at \( x = -7 \).
Solución
To find the vertical asymptotes of the function \( R(x) = \frac{7x}{x + 7} \), we need to determine where the function is undefined. Vertical asymptotes occur at values of \( x \) that make the denominator equal to zero, provided that the numerator is not also zero at those points.
1. **Identify the denominator**: The denominator of the function is \( x + 7 \).
2. **Set the denominator equal to zero**:
\[
x + 7 = 0
\]
3. **Solve for \( x \)**:
\[
x = -7
\]
Now, we check the numerator at this point:
- The numerator \( 7x \) at \( x = -7 \) is \( 7(-7) = -49 \), which is not zero.
Since the denominator is zero and the numerator is not zero at \( x = -7 \), there is a vertical asymptote at this point.
Thus, the function has one vertical asymptote.
The correct choice is:
**A. The function has one vertical asymptote,**
\[
x = -7
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To find the vertical asymptotes of the function \( \mathrm{R}(\mathrm{x})=\frac{7 \mathrm{x}}{\mathrm{x}+7} \), we need to look for values of \( \mathrm{x} \) that make the denominator zero, as these will cause the function to be undefined. Set the denominator equal to zero: \[ \mathrm{x} + 7 = 0 \implies \mathrm{x} = -7 \] So, the function has one vertical asymptote at: \[ \mathrm{x} = -7 \] Therefore, the correct choice is: A. The function has one vertical asymptote, \( \mathrm{x} = -7 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium