Pregunta
upstudy study bank question image url

Let \( f(x)=\frac{3 x^{2}-5 x-12}{2 x^{2}-9 x-5} \) This function has: 1) A \( y \) intercept at the point 2) \( x \) intercepts at the point(s) \( \square \) 3) Vertical asymptotes at \( x= \) \( \square \) 4) Horizontal asymptote at \( y= \) \( \square \) Question Help: Video Calculator

Ask by Colon Willis. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Y-intercept:** \( \left(0, \frac{12}{5}\right) \) - **X-intercepts:** \( \left(-\frac{4}{3}, 0\right) \) and \( (3, 0) \) - **Vertical Asymptotes:** \( x = -\frac{1}{2} \) and \( x = 5 \) - **Horizontal Asymptote:** \( y = \frac{3}{2} \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To find the \( y \)-intercept, set \( x = 0 \) in the function \( f(x) \). This gives \( f(0) = \frac{3(0)^2 - 5(0) - 12}{2(0)^2 - 9(0) - 5} = \frac{-12}{-5} = \frac{12}{5} \). Thus, the \( y \)-intercept is at the point \( (0, \frac{12}{5}) \). Next, to find the \( x \)-intercepts, set \( f(x) = 0 \), which means setting the numerator equal to zero: \( 3x^2 - 5x - 12 = 0 \). Factoring (or using the quadratic formula), we find the roots are at \( x = 4 \) and \( x = -1 \). Therefore, the \( x \)-intercepts are at the points \( (4, 0) \) and \( (-1, 0) \). For vertical asymptotes, we look at where the denominator is zero: \( 2x^2 - 9x - 5 = 0 \). Factoring (or using the quadratic formula) gives the solutions \( x = 5 \) and \( x = -\frac{1}{2} \), so the vertical asymptotes are at \( x = 5 \) and \( x = -\frac{1}{2} \). Lastly, to determine the horizontal asymptote, we compare the leading coefficients of the numerator and denominator. Since both the numerator and denominator are quadratic, the horizontal asymptote is given by the ratio of the leading coefficients: \( y = \frac{3}{2} \). So, summarizing: 1) The \( y \) intercept is at \( (0, \frac{12}{5}) \). 2) The \( x \) intercepts are at the points \( (4, 0) \) and \( (-1, 0) \). 3) The vertical asymptotes are at \( x = 5 \) and \( x = -\frac{1}{2} \). 4) The horizontal asymptote is at \( y = \frac{3}{2} \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad