Pregunta
Evaluate the expression for \( q=-13, r=5 \), and \( s=0 \). Simplify your answer. \( \frac{s^{2}}{r s+q}=\square \)
Ask by Montgomery Montgomery. in the United States
Jan 12,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The expression simplifies to 0.
Solución
To evaluate the expression \( \frac{s^{2}}{r s + q} \) with the given values \( q = -13 \), \( r = 5 \), and \( s = 0 \), follow these steps:
1. **Substitute the values into the expression:**
\[
\frac{0^{2}}{5 \times 0 + (-13)}
\]
2. **Calculate the numerator:**
\[
0^{2} = 0
\]
3. **Calculate the denominator:**
\[
5 \times 0 + (-13) = 0 - 13 = -13
\]
4. **Simplify the expression:**
\[
\frac{0}{-13} = 0
\]
So, the simplified value of the expression is:
\[
0
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To evaluate the expression \( \frac{s^{2}}{r s+q} \) with \( q = -13 \), \( r = 5 \), and \( s = 0 \), we first substitute these values into the expression. Calculating the numerator: \[ s^{2} = 0^{2} = 0 \] Now for the denominator: \[ rs + q = 5 \cdot 0 + (-13) = 0 - 13 = -13 \] Putting it all together: \[ \frac{s^{2}}{rs + q} = \frac{0}{-13} = 0 \] Thus, the simplified answer is: \[ 0 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium