Pregunta
upstudy study bank question image url

The reduced row echelon form of \( \left[\begin{array}{ccc}4 & 24 & -3 \\ -8 & -48 & -6\end{array}\right] \) is

Ask by Ford Stanley. in the United States
Jan 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The reduced row echelon form of the matrix is: \[ \begin{bmatrix} 1 & 6 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Solución

To find the reduced row echelon form (RREF) of the matrix \[ \begin{bmatrix} 4 & 24 & -3 \\ -8 & -48 & -6 \end{bmatrix}, \] we will perform a series of row operations. **Step 1: Normalize the First Row** Divide the first row by 4 to make the leading coefficient (pivot) 1: \[ \begin{bmatrix} 1 & 6 & -\frac{3}{4} \\ -8 & -48 & -6 \end{bmatrix} \] **Step 2: Eliminate the First Column Below the Pivot** Add 8 times the first row to the second row to eliminate the -8 in the first column of the second row: \[ \begin{bmatrix} 1 & 6 & -\frac{3}{4} \\ 0 & 0 & -12 \end{bmatrix} \] **Step 3: Normalize the Second Row** Divide the second row by -12 to make the leading coefficient (pivot) 1: \[ \begin{bmatrix} 1 & 6 & -\frac{3}{4} \\ 0 & 0 & 1 \end{bmatrix} \] **Step 4: Eliminate the Third Column Above the Pivot** Add \(\frac{3}{4}\) times the second row to the first row to eliminate the \(-\frac{3}{4}\) in the first row: \[ \begin{bmatrix} 1 & 6 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] This is the RREF of the original matrix. **Final Answer:** \[ \begin{bmatrix} 1 & 6 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the reduced row echelon form (RREF) of the matrix \( \left[\begin{array}{ccc}4 & 24 & -3 \\ -8 & -48 & -6\end{array}\right] \), we can start by performing row operations. 1. First, let's simplify the first row by dividing it by 4: \[ \left[\begin{array}{ccc}1 & 6 & -\frac{3}{4} \\ -8 & -48 & -6\end{array}\right] \] 2. Next, we'll eliminate the entry below the leading 1 in the first column by adding 8 times the first row to the second row: \[ R_2' = R_2 + 8R_1 \] This gives us: \[ \left[\begin{array}{ccc}1 & 6 & -\frac{3}{4} \\ 0 & 0 & -\frac{24}{4}\end{array}\right] = \left[\begin{array}{ccc}1 & 6 & -\frac{3}{4} \\ 0 & 0 & -6\end{array}\right] \] 3. Next, we can simplify the second row by dividing it by -6: \[ R_2'' = \frac{1}{-6} R_2 = \left[\begin{array}{ccc}1 & 6 & -\frac{3}{4} \\ 0 & 0 & 1\end{array}\right] \] 4. Then we eliminate the entry in the third column of the first row by adding \(\frac{3}{4}\) times the second row to the first row: \[ R_1'' = R_1 + \frac{3}{4} R_2 = \left[\begin{array}{ccc}1 & 6 & 0 \\ 0 & 0 & 1\end{array}\right] \] 5. Finally, we want the leading entry in the second row to be 0 in the first column, resulting in: \[ \left[\begin{array}{ccc} 1 & 6 & 0 \\ 0 & 0 & 1 \end{array}\right] \] Thus, the reduced row echelon form of the given matrix is \[ \left[\begin{array}{ccc} 1 & 6 & 0 \\ 0 & 0 & 1 \end{array}\right]. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad