Pregunta
upstudy study bank question image url

The deflection equation of a cantilever beam is given by \[ E \mathrm{lv}=93.75 \mathrm{x}^{3}-30<\mathrm{x}-3>^{3}-5<\mathrm{x}-6>^{4}-298 \mathrm{x}\left(\mathrm{kNm} \mathrm{~m}^{3}\right) \] where \( x \) is the length of the beam in \( m \) \( E=207 \mathrm{CPa} \), and \( \mathrm{I}=4.5 \times 10^{-4} \mathrm{~m}^{4} \) Find the deflection of the beam when \( \mathrm{x}=4 \mathrm{~m} \). (A) 40.4 mm (B) 47.9 mm

Ask by Ramos Romero. in Singapore
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The deflection of the beam at \( x = 4 \, \text{m} \) is approximately 22.7 mm.

Solución

To find the deflection of the cantilever beam at \( x = 4 \, \text{m} \), we will substitute \( x = 4 \) into the deflection equation: \[ E \mathrm{lv} = 93.75 \mathrm{x}^{3} - 30<\mathrm{x}-3>^{3} - 5<\mathrm{x}-6>^{4} - 298 \mathrm{x} \] First, we need to calculate each term in the equation for \( x = 4 \): 1. Calculate \( 93.75 \mathrm{x}^{3} \): \[ 93.75 \cdot 4^{3} \] 2. Calculate \( -30<\mathrm{x}-3>^{3} \): \[ -30 \cdot (4-3)^{3} = -30 \cdot 1^{3} \] 3. Calculate \( -5<\mathrm{x}-6>^{4} \): \[ -5 \cdot (4-6)^{4} = -5 \cdot (-2)^{4} \] 4. Calculate \( -298 \mathrm{x} \): \[ -298 \cdot 4 \] Now, let's perform these calculations step by step. ### Step 1: Calculate \( 93.75 \cdot 4^{3} \) \[ 4^{3} = 64 \quad \Rightarrow \quad 93.75 \cdot 64 = 6000 \] ### Step 2: Calculate \( -30 \cdot (4-3)^{3} \) \[ (4-3)^{3} = 1^{3} = 1 \quad \Rightarrow \quad -30 \cdot 1 = -30 \] ### Step 3: Calculate \( -5 \cdot (4-6)^{4} \) \[ (4-6)^{4} = (-2)^{4} = 16 \quad \Rightarrow \quad -5 \cdot 16 = -80 \] ### Step 4: Calculate \( -298 \cdot 4 \) \[ -298 \cdot 4 = -1192 \] ### Combine all the results: Now we can combine all these results into the deflection equation: \[ E \mathrm{lv} = 6000 - 30 - 80 - 1192 \] \[ E \mathrm{lv} = 6000 - 1302 = 4698 \] ### Final Calculation: Now, we need to find the deflection \( \mathrm{lv} \): \[ \mathrm{lv} = \frac{4698}{E} \] Given \( E = 207 \, \text{CPa} = 207 \times 10^{3} \, \text{Pa} \): \[ \mathrm{lv} = \frac{4698}{207 \times 10^{3}} \, \text{m} \] Calculating this gives: \[ \mathrm{lv} = \frac{4698}{207000} \approx 0.0227 \, \text{m} = 22.7 \, \text{mm} \] It seems I made a mistake in the calculations. Let's re-evaluate the calculations for \( E \mathrm{lv} \) and ensure we have the correct values. ### Re-evaluate: 1. \( 93.75 \cdot 64 = 6000 \) 2. \( -30 \cdot 1 = -30 \) 3. \( -5 \cdot 16 = -80 \) 4. \( -1192 \) Combining: \[ E \mathrm{lv} = 6000 - 30 - 80 - 1192 = 4698 \] Now, let's calculate \( \mathrm{lv} \) again: \[ \mathrm{lv} = \frac{4698}{207000} \approx 0.0227 \, \text{m} = 22.7 \, \text{mm} \] This value does not match the options provided. Let's check the calculations again for any errors. ### Final Check: 1. \( 93.75 \cdot 64 = 6000 \) 2. \( -30 \cdot 1 = -30 \) 3. \( -5 \cdot 16 = -80 \) 4. \( -1192 \) Combining: \[ E \mathrm{lv} = 6000 - 30 - 80 - 1192 = 4698 \] Calculating \( \mathrm{lv} \): \[ \mathrm{lv} = \frac{4698}{207000} \approx 0.0227 \, \text{m} = 22.7 \, \text{mm} \] ### Conclusion: The calculated deflection does not match the options provided. Please verify the equation or the values given. The calculated deflection is approximately \( 22.7 \, \text{mm} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the deflection of the cantilever beam at \( x = 4 \, m \), we need to substitute \( x = 4 \) into the deflection equation: \[ E \mathrm{lv} = 93.75(4)^3 - 30(4 - 3)^3 - 5(4 - 6)^4 - 298(4) \] Calculating each term separately: 1. \( 93.75(4)^3 = 93.75 \times 64 = 6000 \) 2. \( 30(4 - 3)^3 = 30 \times 1^3 = 30 \) 3. \( 5(4 - 6)^4 = 5 \times (-2)^4 = 5 \times 16 = 80 \) 4. \( 298(4) = 1192 \) Putting it all together: \[ E \mathrm{lv} = 6000 - 30 - 80 - 1192 = 6000 - 1302 = 4698 \, \text{(kNm m³)} \] Now, we need to find \( lv \): \[ lv = \frac{4698}{E} = \frac{4698}{207} \approx 22.67 \, \text{m} \, \text{(taking care of units)} \] This value represents the deflection at \( x = 4m \). However, if we want this value in mm and further compare options, we observe: \[ lv \approx 22.67 \, m \times 1000 = 22670 \, mm \, (\text{not matching given options}) \] After reevaluating relevance, the answer indeed calculates \( lv \) following the coherence in mechanics and avoiding common calculations leading to the defined options (A or B). You might also want to check for signs of manual miscalculation—mathematics can offer playful surprises! Dig deep into real-world engineering scenarios, especially under deflection! Lastly, ensure accuracy in shifting values or conversions. Each variable counts in making sense of engineering calculations. Now go on, get your toolkit ready! 🚀

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad