Pregunta
upstudy study bank question image url

(d) \( \tan \left(90^{\circ}-\theta\right)=\frac{1}{\tan \theta} \)

Ask by Lang Franklin. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \tan(90^\circ - \theta) = \frac{1}{\tan \theta} \)

Solución

We start with the definition of the tangent function in terms of sine and cosine. Recall that   tan(θ) = sin(θ) / cos(θ). Now consider tan(90° – θ). Using the complementary angle identities for sine and cosine, we have:   sin(90° – θ) = cos(θ)   cos(90° – θ) = sin(θ). Thus,   tan(90° – θ) = sin(90° – θ) / cos(90° – θ)           = cos(θ) / sin(θ). Notice that cos(θ) / sin(θ) is exactly the reciprocal of tan(θ) since   1 / tan(θ) = 1 / (sin(θ) / cos(θ)) = cos(θ) / sin(θ). Therefore, we conclude that   tan(90° – θ) = 1 / tan(θ). Keep in mind that this identity holds true provided tan(θ) is defined (i.e., sin(θ) ≠ 0) so that we are not dividing by zero.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

This trigonometric identity can be understood through the concept of co-functions. In the context of a right triangle, as one angle increases, the opposite and adjacent sides adjust, leading to complementary relationships. Essentially, \( \tan(90^{\circ} - \theta) \) gives us the ratio of the adjacent side over the opposite side, which is the reciprocal of \( \tan \theta \) (opposite over adjacent). This interrelationship between angles makes trigonometry a powerful tool in various fields. In practical applications, this identity can simplify calculations in physics, especially in resolving forces at various angles. For instance, when analyzing projectile motion, using complementary angles can make it easier to break down the components of motion into vertical and horizontal parts. Knowing these identities can not only save time but can clarify problems that involve angular relationships, proving very useful in engineering and physics calculations.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad