Pregunta
upstudy study bank question image url

\( \mid \leftarrow \quad \) Perform the indicated operation. Write all answers in lowest terms. \[ \frac{y^{2 n}-y^{n}-12}{5 y^{n}-20} \div \frac{y^{2 n}-9}{3+y^{n}} \]

Ask by Moran Zimmerman. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified answer is \( \frac{1}{5(y^n - 3)} \).

Solución

To solve the expression \[ \frac{y^{2 n}-y^{n}-12}{5 y^{n}-20} \div \frac{y^{2 n}-9}{3+y^{n}}, \] we will follow these steps: 1. **Rewrite the division as multiplication by the reciprocal**: \[ \frac{y^{2 n}-y^{n}-12}{5 y^{n}-20} \times \frac{3+y^{n}}{y^{2 n}-9}. \] 2. **Factor each part of the expression**. ### Step 1: Factor the Numerators and Denominators **Numerator of the first fraction**: \(y^{2n} - y^n - 12\) Let \(x = y^n\). Then we can rewrite it as: \[ x^2 - x - 12. \] Factoring gives: \[ (x - 4)(x + 3) = (y^n - 4)(y^n + 3). \] **Denominator of the first fraction**: \(5y^n - 20\) Factoring out the common term: \[ 5(y^n - 4). \] **Numerator of the second fraction**: \(3 + y^n\) This is already in its simplest form. **Denominator of the second fraction**: \(y^{2n} - 9\) This is a difference of squares: \[ (y^n - 3)(y^n + 3). \] ### Step 2: Substitute the factored forms back into the expression Now substituting the factored forms, we have: \[ \frac{(y^n - 4)(y^n + 3)}{5(y^n - 4)} \times \frac{3 + y^n}{(y^n - 3)(y^n + 3)}. \] ### Step 3: Cancel common factors Notice that \(y^n - 4\) appears in both the numerator and denominator, so we can cancel it: \[ \frac{(y^n + 3)}{5} \times \frac{3 + y^n}{(y^n - 3)(y^n + 3)}. \] Now, \(3 + y^n\) is the same as \(y^n + 3\), so we can cancel \(y^n + 3\): \[ \frac{1}{5} \times \frac{1}{y^n - 3}. \] ### Final Result Thus, the expression simplifies to: \[ \frac{1}{5(y^n - 3)}. \] This is the final answer in lowest terms.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To simplify the expression \[ \frac{y^{2 n}-y^{n}-12}{5 y^{n}-20} \div \frac{y^{2 n}-9}{3+y^{n}}, \] we first rewrite the division as multiplication by the reciprocal: \[ \frac{y^{2 n}-y^{n}-12}{5 y^{n}-20} \cdot \frac{3+y^{n}}{y^{2 n}-9}. \] Next, we factor each part of the expression. 1. **Factoring the numerator \(y^{2n} - y^n - 12\)**: This can be treated as a quadratic in terms of \(y^n\): \[ (y^n - 4)(y^n + 3). \] 2. **Factoring the denominator \(5y^n - 20\)**: We can factor out a 5: \[ 5(y^n - 4). \] 3. **Factoring \(y^{2n} - 9\)** in the denominator of the second fraction: This is a difference of squares: \[ (y^n - 3)(y^n + 3). \] Now we can substitute back into the expression: \[ \frac{(y^n - 4)(y^n + 3)}{5(y^n - 4)} \cdot \frac{3 + y^n}{(y^n - 3)(y^n + 3)}. \] Next, simplify: - The \(y^n - 4\) cancels out: \[ \frac{(y^n + 3)(3 + y^n)}{5(y^n - 3)(y^n + 3)}. \] - The terms \(y^n + 3\) cancel out as well: The remaining expression is: \[ \frac{3 + y^n}{5(y^n - 3)}. \] We can rewrite \(3 + y^n\) as \(y^n + 3\): Thus, the final simplified expression is: \[ \frac{y^n + 3}{5(y^n - 3)}. \] This is the answer in lowest terms.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad