\( \mid \leftarrow \quad \) Perform the indicated operation. Write all answers in lowest terms. \[ \frac{y^{2 n}-y^{n}-12}{5 y^{n}-20} \div \frac{y^{2 n}-9}{3+y^{n}} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To simplify the expression \[ \frac{y^{2 n}-y^{n}-12}{5 y^{n}-20} \div \frac{y^{2 n}-9}{3+y^{n}}, \] we first rewrite the division as multiplication by the reciprocal: \[ \frac{y^{2 n}-y^{n}-12}{5 y^{n}-20} \cdot \frac{3+y^{n}}{y^{2 n}-9}. \] Next, we factor each part of the expression. 1. **Factoring the numerator \(y^{2n} - y^n - 12\)**: This can be treated as a quadratic in terms of \(y^n\): \[ (y^n - 4)(y^n + 3). \] 2. **Factoring the denominator \(5y^n - 20\)**: We can factor out a 5: \[ 5(y^n - 4). \] 3. **Factoring \(y^{2n} - 9\)** in the denominator of the second fraction: This is a difference of squares: \[ (y^n - 3)(y^n + 3). \] Now we can substitute back into the expression: \[ \frac{(y^n - 4)(y^n + 3)}{5(y^n - 4)} \cdot \frac{3 + y^n}{(y^n - 3)(y^n + 3)}. \] Next, simplify: - The \(y^n - 4\) cancels out: \[ \frac{(y^n + 3)(3 + y^n)}{5(y^n - 3)(y^n + 3)}. \] - The terms \(y^n + 3\) cancel out as well: The remaining expression is: \[ \frac{3 + y^n}{5(y^n - 3)}. \] We can rewrite \(3 + y^n\) as \(y^n + 3\): Thus, the final simplified expression is: \[ \frac{y^n + 3}{5(y^n - 3)}. \] This is the answer in lowest terms.
