Pregunta
upstudy study bank question image url

If one base angle of an isosceles triangle is \( 35^{\circ} \). What is the vertex angle? \( 55^{\circ} \) \( 35^{\circ} \) \( 110^{\circ} \) \( 60^{\circ} \)

Ask by Wagner Lang. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The vertex angle is \( 110^{\circ} \).

Solución

In an isosceles triangle, the two base angles are equal. Given that one base angle is 35°, the other base angle is also 35°. Since the sum of the interior angles of any triangle is 180°, the vertex angle can be found by subtracting the sum of the base angles from 180°: Vertex angle = 180° - 35° - 35° = 180° - 70° = 110°. Thus, the vertex angle is 110°.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

In an isosceles triangle, the two base angles are equal. If one base angle is \( 35^{\circ} \), then the other base angle is also \( 35^{\circ} \). To find the vertex angle, you can use the fact that the sum of the interior angles in a triangle is \( 180^{\circ} \). So, you can calculate the vertex angle as follows: Vertex angle = \( 180^{\circ} - (35^{\circ} + 35^{\circ}) = 180^{\circ} - 70^{\circ} = 110^{\circ} \). Thus, the vertex angle is \( 110^{\circ} \). If you ever find yourself caught in a triangle riddle, remember this fun fact: an isosceles triangle gives off vibes of symmetry! Since the two base angles are equal, your work can often be simplified by knowing just one of them. Keeping that in mind can save time during geometry quizzes! For further exploration, dive into the world of triangle types! Beyond isosceles, there are equilateral triangles where all angles are \( 60^{\circ} \), and scalene triangles with all sides of different lengths, leading to unique angle measures. Exploring their properties and the Pythagorean theorem can deepen your understanding of the fascinating world of geometry!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad