Pregunta
upstudy study bank question image url

The area of a circle is \( 64 \pi \mathrm{~m}^{2} \). What is the circumference, in meters? Express y answer in terms of \( \pi \).

Ask by Nunez Montgomery. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The circumference of the circle is \( 16\pi \) meters.

Solución

The area of the circle is given by A = πr², where r is the radius. Given that A = 64π, we have:   πr² = 64π Dividing both sides by π:   r² = 64 Taking the square root:   r = 8 The circumference C is given by:   C = 2πr = 2π(8) = 16π Thus, the circumference of the circle is 16π meters.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the circumference of a circle, we first need to determine its radius from the area formula \( A = \pi r^2 \). Given that \( A = 64\pi \mathrm{~m}^{2} \), we have: \[ \pi r^2 = 64\pi \] Dividing both sides by \( \pi \): \[ r^2 = 64 \] Taking the square root of both sides: \[ r = 8 \, \mathrm{m} \] Next, we use the formula for the circumference \( C = 2\pi r \): \[ C = 2\pi(8) = 16\pi \, \mathrm{m} \] So, the circumference of the circle is \( 16\pi \, \mathrm{m} \). --- Did you know that circles have fascinated mathematicians since ancient times? The ancient Greeks, notably mathematicians like Archimedes, developed many concepts related to circles, including approximations of \( \pi \) and formulas for areas and circumferences. This is why understanding circles is not just about calculations but also about appreciating their rich mathematical history! If you’re a teacher or a parent introducing circles to kids, try using real-life examples! Like measuring round objects at home—frisbees, pizzas, or even hula hoops. You can measure their diameters and calculate areas and circumferences together. It makes math fun and practical, showing how it’s all around us!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad