Pregunta
upstudy study bank question image url

9. Solve a) \( 2.5 \cos \theta-4.2 \sin \theta=3.6: 0^{\circ} \leq \theta \leq 360 \) b) \( 12 \operatorname{Sec} x-1=7 \tan ^{2} x: 0^{\circ} \leq \theta \leq 360^{\circ} \)

Ask by Savage Stewart. in Kenya
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions to the equations are: a) \( \theta = -\arcsin\left(\frac{1512 - \sqrt{1512^2 - 1603019}}{2389}\right) + 2k\pi \) and \( \theta = \arcsin\left(\frac{1512 + \sqrt{1512^2 - 1603019}}{2389}\right) + \pi + 2k\pi \), where \( k \) is an integer. b) \( x = -\operatorname{arcsec}\left(\frac{6 + \sqrt{78}}{7}\right) + 2k\pi \) and \( x = \operatorname{arcsec}\left(\frac{6 + \sqrt{78}}{7}\right) + 2k\pi \), where \( k \) is an integer.

Solución

Solve the equation \( 2.5\cos(\theta)-4.2\sin(\theta)=3.6 \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(2.5\cos\left(\theta \right)-4.2\sin\left(\theta \right)=3.6\) - step1: Move the expression to the right side: \(-4.2\sin\left(\theta \right)=3.6-2.5\cos\left(\theta \right)\) - step2: Move the expression to the left side: \(-4.2\sin\left(\theta \right)-3.6=-2.5\cos\left(\theta \right)\) - step3: Raise both sides to the \(2\)-th power\(:\) \(\left(-4.2\sin\left(\theta \right)-3.6\right)^{2}=\left(-2.5\cos\left(\theta \right)\right)^{2}\) - step4: Calculate: \(17.64\sin^{2}\left(\theta \right)+30.24\sin\left(\theta \right)+12.96=\frac{25}{4}\cos^{2}\left(\theta \right)\) - step5: Rewrite the expression: \(17.64\sin^{2}\left(\theta \right)+30.24\sin\left(\theta \right)+12.96=\frac{25}{4}-\frac{25}{4}\sin^{2}\left(\theta \right)\) - step6: Move the expression to the left side: \(17.64\sin^{2}\left(\theta \right)+30.24\sin\left(\theta \right)+12.96-\left(\frac{25}{4}-\frac{25}{4}\sin^{2}\left(\theta \right)\right)=0\) - step7: Calculate: \(\frac{2389}{100}\sin^{2}\left(\theta \right)+30.24\sin\left(\theta \right)+\frac{671}{100}=0\) - step8: Convert the decimal into a fraction: \(\frac{2389}{100}\sin^{2}\left(\theta \right)+\frac{756}{25}\sin\left(\theta \right)+\frac{671}{100}=0\) - step9: Multiply both sides: \(100\left(\frac{2389}{100}\sin^{2}\left(\theta \right)+\frac{756}{25}\sin\left(\theta \right)+\frac{671}{100}\right)=100\times 0\) - step10: Calculate: \(2389\sin^{2}\left(\theta \right)+3024\sin\left(\theta \right)+671=0\) - step11: Solve using the quadratic formula: \(\sin\left(\theta \right)=\frac{-3024\pm \sqrt{3024^{2}-4\times 2389\times 671}}{2\times 2389}\) - step12: Simplify the expression: \(\sin\left(\theta \right)=\frac{-3024\pm \sqrt{3024^{2}-4\times 2389\times 671}}{4778}\) - step13: Simplify the expression: \(\sin\left(\theta \right)=\frac{-3024\pm \sqrt{3024^{2}-6412076}}{4778}\) - step14: Simplify the expression: \(\sin\left(\theta \right)=\frac{-3024\pm 2\sqrt{1512^{2}-1603019}}{4778}\) - step15: Separate into possible cases: \(\begin{align}&\sin\left(\theta \right)=\frac{-3024+2\sqrt{1512^{2}-1603019}}{4778}\\&\sin\left(\theta \right)=\frac{-3024-2\sqrt{1512^{2}-1603019}}{4778}\end{align}\) - step16: Simplify the expression: \(\begin{align}&\sin\left(\theta \right)=\frac{-1512+\sqrt{1512^{2}-1603019}}{2389}\\&\sin\left(\theta \right)=\frac{-3024-2\sqrt{1512^{2}-1603019}}{4778}\end{align}\) - step17: Simplify the expression: \(\begin{align}&\sin\left(\theta \right)=\frac{-1512+\sqrt{1512^{2}-1603019}}{2389}\\&\sin\left(\theta \right)=-\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\end{align}\) - step18: Calculate: \(\begin{align}&\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\\&\sin\left(\theta \right)=-\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\end{align}\) - step19: Calculate: \(\begin{align}&\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\) - step20: Calculate: \(\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\-\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \\\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\) - step21: Check the solution: \(\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\) Solve the equation \( 12\sec(x)-1=7\tan^{2}(x) \). Solve the equation by following steps: - step0: Solve for \(x\): \(12\sec\left(x\right)-1=7\tan^{2}\left(x\right)\) - step1: Find the domain: \(12\sec\left(x\right)-1=7\tan^{2}\left(x\right),x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step2: Rewrite the expression: \(12\sec\left(x\right)-1=7\sec^{2}\left(x\right)-7\) - step3: Move the expression to the left side: \(12\sec\left(x\right)-1-\left(7\sec^{2}\left(x\right)-7\right)=0\) - step4: Calculate: \(12\sec\left(x\right)+6-7\sec^{2}\left(x\right)=0\) - step5: Rewrite in standard form: \(-7\sec^{2}\left(x\right)+12\sec\left(x\right)+6=0\) - step6: Multiply both sides: \(7\sec^{2}\left(x\right)-12\sec\left(x\right)-6=0\) - step7: Solve using the quadratic formula: \(\sec\left(x\right)=\frac{12\pm \sqrt{\left(-12\right)^{2}-4\times 7\left(-6\right)}}{2\times 7}\) - step8: Simplify the expression: \(\sec\left(x\right)=\frac{12\pm \sqrt{\left(-12\right)^{2}-4\times 7\left(-6\right)}}{14}\) - step9: Simplify the expression: \(\sec\left(x\right)=\frac{12\pm \sqrt{312}}{14}\) - step10: Simplify the expression: \(\sec\left(x\right)=\frac{12\pm 2\sqrt{78}}{14}\) - step11: Separate into possible cases: \(\begin{align}&\sec\left(x\right)=\frac{12+2\sqrt{78}}{14}\\&\sec\left(x\right)=\frac{12-2\sqrt{78}}{14}\end{align}\) - step12: Simplify the expression: \(\begin{align}&\sec\left(x\right)=\frac{6+\sqrt{78}}{7}\\&\sec\left(x\right)=\frac{12-2\sqrt{78}}{14}\end{align}\) - step13: Simplify the expression: \(\begin{align}&\sec\left(x\right)=\frac{6+\sqrt{78}}{7}\\&\sec\left(x\right)=\frac{6-\sqrt{78}}{7}\end{align}\) - step14: Rearrange the terms: \(\begin{align}&\sec\left(x\right)=\frac{6+\sqrt{78}}{7}\\&x \notin \mathbb{R}\end{align}\) - step15: Calculate: \(\begin{align}&x=\left\{ \begin{array}{l}-\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \\\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\\&x \notin \mathbb{R}\end{align}\) - step16: Find the union: \(x=\left\{ \begin{array}{l}-\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \\\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\) - step17: Check if the solution is in the defined range: \(x=\left\{ \begin{array}{l}-\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \\\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z},x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step18: Find the intersection: \(x=\left\{ \begin{array}{l}-\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \\\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\) The solutions to the given trigonometric equations are: a) \( 2.5 \cos \theta - 4.2 \sin \theta = 3.6 \): \[ \theta = \left\{ \begin{array}{l} -\arcsin(\frac{1512-\sqrt{1512^{2}-1603019}}{2389})+2k\pi \\ \arcsin(\frac{1512+\sqrt{1512^{2}-1603019}}{2389})+\pi +2k\pi \end{array} \right., k \in \mathbb{Z} \] b) \( 12 \sec x - 1 = 7 \tan^{2} x \): \[ x = \left\{ \begin{array}{l} -\operatorname{arcsec}(\frac{6+\sqrt{78}}{7})+2k\pi \\ \operatorname{arcsec}(\frac{6+\sqrt{78}}{7})+2k\pi \end{array} \right., k \in \mathbb{Z} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the first equation \(2.5 \cos \theta - 4.2 \sin \theta = 3.6\), we can rearrange it to the form \(R \cos(\theta + \phi) = C\). To find \(R\), we calculate \(R = \sqrt{(2.5)^2 + (-4.2)^2} \approx 4.84\). Then, \(C = 3.6\) and we find \(\phi\) such that \(\tan \phi = \frac{-4.2}{2.5}\). Solving for \(\theta\), we can find the angles in the specified range where \( \theta = \phi + \cos^{-1}(\frac{C}{R})\) and \(\theta = 360^\circ - \phi - \cos^{-1}(\frac{C}{R})\). For the second equation \(12 \operatorname{Sec} x - 1 = 7 \tan^2 x\), we first rewrite \(\sec x\) as \(\frac{1}{\cos x}\) and \(\tan^2 x\) as \(\frac{\sin^2 x}{\cos^2 x}\). This gives us \(12 \cdot \frac{1}{\cos x} - 1 = 7 \cdot \frac{\sin^2 x}{\cos^2 x}\). By substituting \(\sin^2 x = 1 - \cos^2 x\), we can rearrange the equation into a polynomial inequality in terms of \(\cos x\). Solving this polynomial allows us to find the values of \(x\) in the required range. Don't forget to convert back to degrees or evaluate any other trigonometric expressions needed! Now, go grab your calculator and solve it step-by-step; the angles won’t find themselves!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad