Responder
The solutions to the equations are:
a) \( \theta = -\arcsin\left(\frac{1512 - \sqrt{1512^2 - 1603019}}{2389}\right) + 2k\pi \) and \( \theta = \arcsin\left(\frac{1512 + \sqrt{1512^2 - 1603019}}{2389}\right) + \pi + 2k\pi \), where \( k \) is an integer.
b) \( x = -\operatorname{arcsec}\left(\frac{6 + \sqrt{78}}{7}\right) + 2k\pi \) and \( x = \operatorname{arcsec}\left(\frac{6 + \sqrt{78}}{7}\right) + 2k\pi \), where \( k \) is an integer.
Solución
Solve the equation \( 2.5\cos(\theta)-4.2\sin(\theta)=3.6 \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(2.5\cos\left(\theta \right)-4.2\sin\left(\theta \right)=3.6\)
- step1: Move the expression to the right side:
\(-4.2\sin\left(\theta \right)=3.6-2.5\cos\left(\theta \right)\)
- step2: Move the expression to the left side:
\(-4.2\sin\left(\theta \right)-3.6=-2.5\cos\left(\theta \right)\)
- step3: Raise both sides to the \(2\)-th power\(:\)
\(\left(-4.2\sin\left(\theta \right)-3.6\right)^{2}=\left(-2.5\cos\left(\theta \right)\right)^{2}\)
- step4: Calculate:
\(17.64\sin^{2}\left(\theta \right)+30.24\sin\left(\theta \right)+12.96=\frac{25}{4}\cos^{2}\left(\theta \right)\)
- step5: Rewrite the expression:
\(17.64\sin^{2}\left(\theta \right)+30.24\sin\left(\theta \right)+12.96=\frac{25}{4}-\frac{25}{4}\sin^{2}\left(\theta \right)\)
- step6: Move the expression to the left side:
\(17.64\sin^{2}\left(\theta \right)+30.24\sin\left(\theta \right)+12.96-\left(\frac{25}{4}-\frac{25}{4}\sin^{2}\left(\theta \right)\right)=0\)
- step7: Calculate:
\(\frac{2389}{100}\sin^{2}\left(\theta \right)+30.24\sin\left(\theta \right)+\frac{671}{100}=0\)
- step8: Convert the decimal into a fraction:
\(\frac{2389}{100}\sin^{2}\left(\theta \right)+\frac{756}{25}\sin\left(\theta \right)+\frac{671}{100}=0\)
- step9: Multiply both sides:
\(100\left(\frac{2389}{100}\sin^{2}\left(\theta \right)+\frac{756}{25}\sin\left(\theta \right)+\frac{671}{100}\right)=100\times 0\)
- step10: Calculate:
\(2389\sin^{2}\left(\theta \right)+3024\sin\left(\theta \right)+671=0\)
- step11: Solve using the quadratic formula:
\(\sin\left(\theta \right)=\frac{-3024\pm \sqrt{3024^{2}-4\times 2389\times 671}}{2\times 2389}\)
- step12: Simplify the expression:
\(\sin\left(\theta \right)=\frac{-3024\pm \sqrt{3024^{2}-4\times 2389\times 671}}{4778}\)
- step13: Simplify the expression:
\(\sin\left(\theta \right)=\frac{-3024\pm \sqrt{3024^{2}-6412076}}{4778}\)
- step14: Simplify the expression:
\(\sin\left(\theta \right)=\frac{-3024\pm 2\sqrt{1512^{2}-1603019}}{4778}\)
- step15: Separate into possible cases:
\(\begin{align}&\sin\left(\theta \right)=\frac{-3024+2\sqrt{1512^{2}-1603019}}{4778}\\&\sin\left(\theta \right)=\frac{-3024-2\sqrt{1512^{2}-1603019}}{4778}\end{align}\)
- step16: Simplify the expression:
\(\begin{align}&\sin\left(\theta \right)=\frac{-1512+\sqrt{1512^{2}-1603019}}{2389}\\&\sin\left(\theta \right)=\frac{-3024-2\sqrt{1512^{2}-1603019}}{4778}\end{align}\)
- step17: Simplify the expression:
\(\begin{align}&\sin\left(\theta \right)=\frac{-1512+\sqrt{1512^{2}-1603019}}{2389}\\&\sin\left(\theta \right)=-\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\end{align}\)
- step18: Calculate:
\(\begin{align}&\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\\&\sin\left(\theta \right)=-\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\end{align}\)
- step19: Calculate:
\(\begin{align}&\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\)
- step20: Calculate:
\(\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\-\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \\\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step21: Check the solution:
\(\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1512-\sqrt{1512^{2}-1603019}}{2389}\right)+2k\pi \\\arcsin\left(\frac{1512+\sqrt{1512^{2}-1603019}}{2389}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( 12\sec(x)-1=7\tan^{2}(x) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(12\sec\left(x\right)-1=7\tan^{2}\left(x\right)\)
- step1: Find the domain:
\(12\sec\left(x\right)-1=7\tan^{2}\left(x\right),x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step2: Rewrite the expression:
\(12\sec\left(x\right)-1=7\sec^{2}\left(x\right)-7\)
- step3: Move the expression to the left side:
\(12\sec\left(x\right)-1-\left(7\sec^{2}\left(x\right)-7\right)=0\)
- step4: Calculate:
\(12\sec\left(x\right)+6-7\sec^{2}\left(x\right)=0\)
- step5: Rewrite in standard form:
\(-7\sec^{2}\left(x\right)+12\sec\left(x\right)+6=0\)
- step6: Multiply both sides:
\(7\sec^{2}\left(x\right)-12\sec\left(x\right)-6=0\)
- step7: Solve using the quadratic formula:
\(\sec\left(x\right)=\frac{12\pm \sqrt{\left(-12\right)^{2}-4\times 7\left(-6\right)}}{2\times 7}\)
- step8: Simplify the expression:
\(\sec\left(x\right)=\frac{12\pm \sqrt{\left(-12\right)^{2}-4\times 7\left(-6\right)}}{14}\)
- step9: Simplify the expression:
\(\sec\left(x\right)=\frac{12\pm \sqrt{312}}{14}\)
- step10: Simplify the expression:
\(\sec\left(x\right)=\frac{12\pm 2\sqrt{78}}{14}\)
- step11: Separate into possible cases:
\(\begin{align}&\sec\left(x\right)=\frac{12+2\sqrt{78}}{14}\\&\sec\left(x\right)=\frac{12-2\sqrt{78}}{14}\end{align}\)
- step12: Simplify the expression:
\(\begin{align}&\sec\left(x\right)=\frac{6+\sqrt{78}}{7}\\&\sec\left(x\right)=\frac{12-2\sqrt{78}}{14}\end{align}\)
- step13: Simplify the expression:
\(\begin{align}&\sec\left(x\right)=\frac{6+\sqrt{78}}{7}\\&\sec\left(x\right)=\frac{6-\sqrt{78}}{7}\end{align}\)
- step14: Rearrange the terms:
\(\begin{align}&\sec\left(x\right)=\frac{6+\sqrt{78}}{7}\\&x \notin \mathbb{R}\end{align}\)
- step15: Calculate:
\(\begin{align}&x=\left\{ \begin{array}{l}-\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \\\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\\&x \notin \mathbb{R}\end{align}\)
- step16: Find the union:
\(x=\left\{ \begin{array}{l}-\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \\\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step17: Check if the solution is in the defined range:
\(x=\left\{ \begin{array}{l}-\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \\\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z},x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\)
- step18: Find the intersection:
\(x=\left\{ \begin{array}{l}-\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \\\operatorname{arcsec}\left(\frac{6+\sqrt{78}}{7}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
The solutions to the given trigonometric equations are:
a) \( 2.5 \cos \theta - 4.2 \sin \theta = 3.6 \):
\[ \theta = \left\{ \begin{array}{l} -\arcsin(\frac{1512-\sqrt{1512^{2}-1603019}}{2389})+2k\pi \\ \arcsin(\frac{1512+\sqrt{1512^{2}-1603019}}{2389})+\pi +2k\pi \end{array} \right., k \in \mathbb{Z} \]
b) \( 12 \sec x - 1 = 7 \tan^{2} x \):
\[ x = \left\{ \begin{array}{l} -\operatorname{arcsec}(\frac{6+\sqrt{78}}{7})+2k\pi \\ \operatorname{arcsec}(\frac{6+\sqrt{78}}{7})+2k\pi \end{array} \right., k \in \mathbb{Z} \]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución