Responder
Here are the simplified forms of the given expressions:
1. **(10)**: \( \frac{3p - 2}{3} \)
2. **(11)**: \( -\frac{3 + k}{k} \)
3. **(12)**: \( \frac{3}{3k - 2} \)
4. **(13)**: \( -2 \)
5. **(14)**: \( x - 2 \)
6. **(15)**: \( \frac{4}{x^{2} - 9} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(3-1\right)^{2}}{\left(x^{2}-9\right)}\)
- step1: Remove the parentheses:
\(\frac{\left(3-1\right)^{2}}{x^{2}-9}\)
- step2: Subtract the numbers:
\(\frac{2^{2}}{x^{2}-9}\)
- step3: Evaluate the power:
\(\frac{4}{x^{2}-9}\)
Calculate or simplify the expression \( (9 - k^2)/(k^2 - 3*k) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(9-k^{2}\right)}{\left(k^{2}-3k\right)}\)
- step1: Remove the parentheses:
\(\frac{9-k^{2}}{k^{2}-3k}\)
- step2: Factor the expression:
\(\frac{\left(k-3\right)\left(-3-k\right)}{k\left(k-3\right)}\)
- step3: Reduce the fraction:
\(\frac{-3-k}{k}\)
- step4: Calculate:
\(-\frac{3+k}{k}\)
Calculate or simplify the expression \( (27*p^3 - 8)/(27*p^2 + 18*p + 12) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(27p^{3}-8\right)}{\left(27p^{2}+18p+12\right)}\)
- step1: Remove the parentheses:
\(\frac{27p^{3}-8}{27p^{2}+18p+12}\)
- step2: Factor the expression:
\(\frac{\left(9p^{2}+6p+4\right)\left(3p-2\right)}{3\left(9p^{2}+6p+4\right)}\)
- step3: Reduce the fraction:
\(\frac{3p-2}{3}\)
Calculate or simplify the expression \( (x^2*(x + 2) - 4*(x + 2))/((x + 2)^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x^{2}\left(x+2\right)-4\left(x+2\right)\right)}{\left(x+2\right)^{2}}\)
- step1: Remove the parentheses:
\(\frac{x^{2}\left(x+2\right)-4\left(x+2\right)}{\left(x+2\right)^{2}}\)
- step2: Subtract the terms:
\(\frac{x^{3}+2x^{2}-4x-8}{\left(x+2\right)^{2}}\)
- step3: Factor the expression:
\(\frac{\left(x+2\right)\left(x^{2}-4\right)}{\left(x+2\right)^{2}}\)
- step4: Reduce the fraction:
\(\frac{x^{2}-4}{x+2}\)
- step5: Factor the expression:
\(\frac{\left(x+2\right)\left(x-2\right)}{x+2}\)
- step6: Reduce the fraction:
\(x-2\)
Calculate or simplify the expression \( (10 - 2*x)/(x - 5) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(10-2x\right)}{\left(x-5\right)}\)
- step1: Remove the parentheses:
\(\frac{10-2x}{x-5}\)
- step2: Factor the expression:
\(\frac{-2\left(x-5\right)}{x-5}\)
- step3: Reduce the fraction:
\(-2\)
Calculate or simplify the expression \( (6 + 9*k)/(9*k^2 - 4) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(6+9k\right)}{\left(9k^{2}-4\right)}\)
- step1: Remove the parentheses:
\(\frac{6+9k}{9k^{2}-4}\)
- step2: Factor the expression:
\(\frac{3\left(3k+2\right)}{\left(3k+2\right)\left(3k-2\right)}\)
- step3: Reduce the fraction:
\(\frac{3}{3k-2}\)
Here are the simplified results for each of the given expressions:
1. **Expression (10)**:
\[
\frac{27 p^{3}-8}{27 p^{2}+18 p+12} \rightarrow \frac{3p-2}{3}
\]
2. **Expression (11)**:
\[
\frac{9-k^{2}}{k^{2}-3 k} \rightarrow -\frac{3+k}{k}
\]
3. **Expression (12)**:
\[
\frac{6+9 k}{9 k^{2}-4} \rightarrow \frac{3}{3k-2}
\]
4. **Expression (13)**:
\[
\frac{10-2 x}{x-5} \rightarrow -2
\]
5. **Expression (14)**:
\[
\frac{x^{2}(x+2)-4(x+2)}{(x+2)^{2}} \rightarrow x-2
\]
6. **Expression (15)**:
\[
\frac{(3-1)^{2}}{x^{2}-9} \rightarrow \frac{4}{x^{2}-9}
\]
These results provide the simplified forms of each expression. If you need further assistance or explanations, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución