Pregunta
upstudy study bank question image url

Hmaxant \( \begin{array}{lll}\text { (10) } \frac{27 p^{3}-8}{27 p^{2}+18 p+12} & \text { (11) } \frac{9-k^{2}}{k^{2}-3 k} & \text { (12) } \frac{6+9 k}{9 k^{2}-4} \\ \text { (13) } \frac{10-2 x}{x-5} & \text { (14) } \frac{x^{2}(x+2)-4(x+2)}{(x+2)^{2}} & \text { (15) } \frac{(3-1)^{2}}{x^{2}-9}\end{array} \)

Ask by Brewer Murray. in South Africa
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified forms of the given expressions: 1. **(10)**: \( \frac{3p - 2}{3} \) 2. **(11)**: \( -\frac{3 + k}{k} \) 3. **(12)**: \( \frac{3}{3k - 2} \) 4. **(13)**: \( -2 \) 5. **(14)**: \( x - 2 \) 6. **(15)**: \( \frac{4}{x^{2} - 9} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(\frac{\left(3-1\right)^{2}}{\left(x^{2}-9\right)}\) - step1: Remove the parentheses: \(\frac{\left(3-1\right)^{2}}{x^{2}-9}\) - step2: Subtract the numbers: \(\frac{2^{2}}{x^{2}-9}\) - step3: Evaluate the power: \(\frac{4}{x^{2}-9}\) Calculate or simplify the expression \( (9 - k^2)/(k^2 - 3*k) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(9-k^{2}\right)}{\left(k^{2}-3k\right)}\) - step1: Remove the parentheses: \(\frac{9-k^{2}}{k^{2}-3k}\) - step2: Factor the expression: \(\frac{\left(k-3\right)\left(-3-k\right)}{k\left(k-3\right)}\) - step3: Reduce the fraction: \(\frac{-3-k}{k}\) - step4: Calculate: \(-\frac{3+k}{k}\) Calculate or simplify the expression \( (27*p^3 - 8)/(27*p^2 + 18*p + 12) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(27p^{3}-8\right)}{\left(27p^{2}+18p+12\right)}\) - step1: Remove the parentheses: \(\frac{27p^{3}-8}{27p^{2}+18p+12}\) - step2: Factor the expression: \(\frac{\left(9p^{2}+6p+4\right)\left(3p-2\right)}{3\left(9p^{2}+6p+4\right)}\) - step3: Reduce the fraction: \(\frac{3p-2}{3}\) Calculate or simplify the expression \( (x^2*(x + 2) - 4*(x + 2))/((x + 2)^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x^{2}\left(x+2\right)-4\left(x+2\right)\right)}{\left(x+2\right)^{2}}\) - step1: Remove the parentheses: \(\frac{x^{2}\left(x+2\right)-4\left(x+2\right)}{\left(x+2\right)^{2}}\) - step2: Subtract the terms: \(\frac{x^{3}+2x^{2}-4x-8}{\left(x+2\right)^{2}}\) - step3: Factor the expression: \(\frac{\left(x+2\right)\left(x^{2}-4\right)}{\left(x+2\right)^{2}}\) - step4: Reduce the fraction: \(\frac{x^{2}-4}{x+2}\) - step5: Factor the expression: \(\frac{\left(x+2\right)\left(x-2\right)}{x+2}\) - step6: Reduce the fraction: \(x-2\) Calculate or simplify the expression \( (10 - 2*x)/(x - 5) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(10-2x\right)}{\left(x-5\right)}\) - step1: Remove the parentheses: \(\frac{10-2x}{x-5}\) - step2: Factor the expression: \(\frac{-2\left(x-5\right)}{x-5}\) - step3: Reduce the fraction: \(-2\) Calculate or simplify the expression \( (6 + 9*k)/(9*k^2 - 4) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(6+9k\right)}{\left(9k^{2}-4\right)}\) - step1: Remove the parentheses: \(\frac{6+9k}{9k^{2}-4}\) - step2: Factor the expression: \(\frac{3\left(3k+2\right)}{\left(3k+2\right)\left(3k-2\right)}\) - step3: Reduce the fraction: \(\frac{3}{3k-2}\) Here are the simplified results for each of the given expressions: 1. **Expression (10)**: \[ \frac{27 p^{3}-8}{27 p^{2}+18 p+12} \rightarrow \frac{3p-2}{3} \] 2. **Expression (11)**: \[ \frac{9-k^{2}}{k^{2}-3 k} \rightarrow -\frac{3+k}{k} \] 3. **Expression (12)**: \[ \frac{6+9 k}{9 k^{2}-4} \rightarrow \frac{3}{3k-2} \] 4. **Expression (13)**: \[ \frac{10-2 x}{x-5} \rightarrow -2 \] 5. **Expression (14)**: \[ \frac{x^{2}(x+2)-4(x+2)}{(x+2)^{2}} \rightarrow x-2 \] 6. **Expression (15)**: \[ \frac{(3-1)^{2}}{x^{2}-9} \rightarrow \frac{4}{x^{2}-9} \] These results provide the simplified forms of each expression. If you need further assistance or explanations, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that rational expressions like those you've listed are essentially fractions where both the numerator and denominator are polynomials? Understanding how to simplify or manipulate them is key in algebra and calculus, especially when working with limits and discontinuities. They can help model real-world scenarios in physics and engineering too, like calculating rates or understanding behavior as values approach limits. When working with these expressions, it's critical to factor both the numerator and denominator to identify restrictions or simplify the expression. Common mistakes include canceling terms incorrectly or neglecting to consider values that would make the denominator zero. Always check for undefined values before simplifying!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad