Pregunta
upstudy study bank question image url

Exponential: \( y=4 \cdot(2)^{x-2}+1 \)

Ask by Carter Tyler. in South Africa
Feb 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( y = 4 \cdot 2^{x-2} + 1 \) is an exponential function that has been transformed as follows: - **Horizontal Shift**: Shifted 2 units to the right. - **Vertical Scaling**: Stretched vertically by a factor of 4. - **Vertical Shift**: Moved upward by 1 unit. Key points include: - **Domain**: All real numbers. - **Range**: \( y > 1 \). - **Y-intercept**: (0, 2). - **Point on Graph**: (2, 5). Overall, it's an exponentially increasing curve with the specified transformations.

Solución

The function   y = 4 · 2^(x – 2) + 1 is an exponential function obtained by transforming the basic exponential f(x) = 2^x. Here’s a breakdown of its features and transformations: 1. Base Function:   • The original exponential function is f(x) = 2^x. 2. Horizontal Shift:   • The exponent (x – 2) means the graph is shifted to the right by 2 units. 3. Vertical Scaling:   • Multiplying 2^(x – 2) by 4 stretches the graph vertically by a factor of 4. 4. Vertical Shift:   • Finally, adding 1 moves the entire graph upward by 1 unit. 5. Domain and Range:   • Domain: All real numbers (–∞, ∞) since exponential functions are defined for every x.   • Range: The basic function 2^x has a range of (0, ∞). After the vertical transformations, the range becomes (1, ∞) because the horizontal asymptote shifts to y = 1. 6. Key Points:   • Horizontal Asymptote: y = 1 (due to the +1 shift)   • x = 2 gives y = 4 · 2^(0) + 1 = 4 · 1 + 1 = 5. So, the point (2, 5) lies on the graph.   • For x = 0: y = 4 · 2^(0 – 2) + 1 = 4 · 2^(–2) + 1 = 4 · (1/4) + 1 = 1 + 1 = 2. Thus, the y-intercept is (0, 2). Overall, the graph of y = 4 · 2^(x–2) + 1 is an exponentially increasing curve that has been shifted right 2 units and up 1 unit, and scaled vertically by a factor of 4.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that exponential functions can model real-world phenomena like population growth and radioactive decay? In the function \( y=4 \cdot(2)^{x-2}+1 \), the base \( 2 \) means that for every increase of \( 1 \) in \( x \), \( y \) doubles, showcasing explosive growth! This makes it an excellent fit for scenarios where quantities skyrocket. When dealing with exponential equations, a common mistake is forgetting to account for transformations like translation and scaling! For instance, in your function \( y=4 \cdot(2)^{x-2}+1 \), the \( -2 \) shifts your graph to the right, and the \( +1 \) raises it vertically. Always sketch or visualize these transformations to avoid confusion in your analysis!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad