Pregunta
Given \( f(x)=x^{5} \) and \( g(x)=(2 x+3) \), find a. the composite function \( h(x)=(f \circ g)(x) \) b. the derivative of \( h \) (hint: use chain) Blank \# \( 1 \square \) A/ Blank \# 2 A/
Ask by Nichols Paul. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
a. \( h(x) = (2x + 3)^5 \)
b. \( h'(x) = 10(2x + 3)^4 \)
Solución
To solve the problem, we will follow the steps outlined:
### Part a: Finding the Composite Function \( h(x) = (f \circ g)(x) \)
1. **Identify the functions**:
- \( f(x) = x^5 \)
- \( g(x) = 2x + 3 \)
2. **Compose the functions**:
The composite function \( h(x) \) is defined as:
\[
h(x) = f(g(x))
\]
This means we will substitute \( g(x) \) into \( f(x) \).
3. **Substituting \( g(x) \) into \( f(x) \)**:
\[
h(x) = f(g(x)) = f(2x + 3) = (2x + 3)^5
\]
Thus, the composite function is:
\[
h(x) = (2x + 3)^5
\]
### Part b: Finding the Derivative of \( h \)
To find the derivative \( h'(x) \), we will use the chain rule. The chain rule states that if you have a composite function \( h(x) = f(g(x)) \), then the derivative is given by:
\[
h'(x) = f'(g(x)) \cdot g'(x)
\]
1. **Find \( f'(x) \)**:
\[
f'(x) = 5x^4
\]
2. **Find \( g'(x) \)**:
\[
g'(x) = 2
\]
3. **Evaluate \( f'(g(x)) \)**:
Substitute \( g(x) = 2x + 3 \) into \( f'(x) \):
\[
f'(g(x)) = f'(2x + 3) = 5(2x + 3)^4
\]
4. **Apply the chain rule**:
Now, we can find \( h'(x) \):
\[
h'(x) = f'(g(x)) \cdot g'(x) = 5(2x + 3)^4 \cdot 2
\]
\[
h'(x) = 10(2x + 3)^4
\]
### Final Answers
- Blank # 1: \( (2x + 3)^5 \)
- Blank # 2: \( 10(2x + 3)^4 \)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To find the composite function \( h(x) = (f \circ g)(x) \), we start by substituting \( g(x) \) into \( f(x) \). So: a. \( h(x) = f(g(x)) = f(2x + 3) = (2x + 3)^{5} \). Now, for the derivative of \( h \): b. To differentiate \( h(x) = (2x + 3)^{5} \), we’ll apply the chain rule. We get \( h'(x) = 5(2x + 3)^{4} \cdot (2) = 10(2x + 3)^{4} \). Blank # 1: \( (2x + 3)^{5} \) Blank # 2: \( 10(2x + 3)^{4} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium