Pregunta
upstudy study bank question image url

Let \( f(x)=|x+7| \). Use the definition of the absolute value to expand and write the function as a piecewise define function. Choose the most correct answer. (A) \( f(x)=|x+7|=\left\{\begin{array}{ll}x+7 & \text { if } x \geq-7 \\ -x+7 & \text { if } x<-7\end{array}\right. \) (B) \( f(x)=|x+7|=\left\{\begin{array}{ll}x+7 & \text { if } x \geq 0 \\ -x+7 & \text { if } x<0\end{array}\right. \) (C) \( f(x)=|x+7|=\left\{\begin{array}{ll}x+7 & \text { if } x \geq 0 \\ -x-7 & \text { if } x<0\end{array}\right. \) (D) \( f(x)=|x+7|=\left\{\begin{array}{ll}x+7 & \text { if } x \geq-7 \\ -x-7 & \text { if } x<-7\end{array}\right. \) (E) None of these

Ask by Wilson Chan. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct piecewise definition of \( f(x) = |x + 7| \) is: \[ f(x) = |x + 7| = \begin{cases} x + 7 & \text{if } x \geq -7 \\ -x - 7 & \text{if } x < -7 \end{cases} \] So, the correct choice is **(D)**.

Solución

To write f(x) = |x + 7| as a piecewise function, we first note that the expression inside the absolute value, x + 7, changes sign at x = -7. Recall the definition of absolute value:   |a| = a if a ≥ 0, and   |a| = -a if a < 0. Let a = x + 7. Therefore:   If x + 7 ≥ 0 (which is x ≥ -7), then |x + 7| = x + 7.   If x + 7 < 0 (which is x < -7), then |x + 7| = -(x + 7) = -x - 7. Thus, the function can be written as:   f(x) = |x + 7| = { x + 7 if x ≥ -7,           -x - 7 if x < -7 }. The answer matching this expression is option (D).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To express the function \( f(x) = |x+7| \) as a piecewise function, we need to consider the point where the expression inside the absolute value, \( x + 7 \), equals zero. This occurs when \( x = -7 \). Hence, the function can be defined as follows: when \( x \) is greater than or equal to -7, \( |x+7| \) equals \( x+7 \). When \( x \) is less than -7, \( |x+7| \) equals \( -(x + 7) \), which simplifies to \( -x - 7 \). So, the correct piecewise definition is: \( f(x) = |x+7| = \begin{cases} x + 7 & \text{if } x \geq -7 \\ -x - 7 & \text{if } x < -7 \end{cases} \) Therefore, the answer is (D) \( f(x) = |x+7| = \left\{\begin{array}{ll} x+7 & \text{if } x \geq -7 \\ -x-7 & \text{if } x < -7 \end{array}\right. \). Did you know that the concept of absolute value has been around since ancient times? It was used in early mathematics to discuss distances, particularly by the Greeks. However, it wasn’t until the 19th century that mathematicians like Karl Weierstrass formalized it within the framework of modern analysis. These roots show just how integral absolute values have been to mathematical evolution! For those diving deeper into the world of absolute values, "mathematical analysis" books can be a treasure trove of knowledge. Titles like "Principles of Mathematical Analysis" by Walter Rudin provide a strong foundation for understanding not only absolute values but also their implications in calculus and beyond. This journey through mathematical landscapes can be engaging and rewarding!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad