Responder
Here are the simplified results for each expression:
(a) \( \frac{9a^{8}}{25b^{12}} \)
(b) \( \frac{8x^{12}}{y^{9}} \)
(c) \( \frac{q^{2}}{3p^{2}} \)
(d) \( 4x^{4} \)
(e) \( \frac{1}{a^{2}} \)
(f) \( \frac{2}{x^{3}} \)
(g) \( \frac{y^{11}}{x^{6}} \)
(h) \( \frac{1}{2} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{6x^{7}}{\left(12x^{9}\right)}\right)^{-2}\)
- step1: Evaluate:
\(\left(\frac{6x^{7}}{12x^{9}}\right)^{-2}\)
- step2: Divide the terms:
\(\left(\frac{1}{2x^{2}}\right)^{-2}\)
- step3: Evaluate the power:
\(\left(2x^{2}\right)^{2}\)
- step4: Use the properties of exponents:
\(2^{2}\left(x^{2}\right)^{2}\)
- step5: Evaluate the power:
\(4x^{4}\)
Calculate or simplify the expression \( ((x^3+x^3)/(x^3*x^3)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x^{3}+x^{3}\right)}{\left(x^{3}\times x^{3}\right)}\)
- step1: Remove the parentheses:
\(\frac{x^{3}+x^{3}}{x^{3}\times x^{3}}\)
- step2: Multiply the terms:
\(\frac{x^{3}+x^{3}}{x^{6}}\)
- step3: Add the terms:
\(\frac{2x^{3}}{x^{6}}\)
- step4: Reduce the fraction:
\(\frac{2}{x^{6-3}}\)
- step5: Reduce the fraction:
\(\frac{2}{x^{3}}\)
Calculate or simplify the expression \( (2*(a^(-2)*b^2)^(-3)*(a*b)^(-6))/((2*b^(-6))^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}\right)}{\left(\left(2b^{-6}\right)^{2}\right)}\)
- step1: Evaluate:
\(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}\right)}{\left(2b^{-6}\right)^{2}}\)
- step2: Remove the parentheses:
\(\frac{2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}}{\left(2b^{-6}\right)^{2}}\)
- step3: Factor the expression:
\(\frac{2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}}{2^{2}b^{-12}}\)
- step4: Reduce the fraction:
\(\frac{\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}}{2b^{-12}}\)
- step5: Evaluate the power:
\(\frac{a^{6}b^{-6}\left(ab\right)^{-6}}{2b^{-12}}\)
- step6: Use the properties of exponents:
\(\frac{a^{6}b^{-6}a^{-6}b^{-6}}{2b^{-12}}\)
- step7: Simplify:
\(\frac{b^{-12}}{2b^{-12}}\)
- step8: Reduce the fraction:
\(\frac{1}{2}\)
Calculate or simplify the expression \( ((x^(-2)*y^4)^2)/(x^2*y^(-3)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(\left(x^{-2}y^{4}\right)^{2}\right)}{\left(x^{2}y^{-3}\right)}\)
- step1: Evaluate:
\(\frac{\left(x^{-2}y^{4}\right)^{2}}{\left(x^{2}y^{-3}\right)}\)
- step2: Remove the parentheses:
\(\frac{\left(x^{-2}y^{4}\right)^{2}}{x^{2}y^{-3}}\)
- step3: Rewrite the expression:
\(\frac{\left(x^{-2}y^{4}\right)^{2}}{\frac{x^{2}}{y^{3}}}\)
- step4: Multiply by the reciprocal:
\(\left(x^{-2}y^{4}\right)^{2}\times \frac{y^{3}}{x^{2}}\)
- step5: Multiply the terms:
\(\frac{\left(x^{-2}y^{4}\right)^{2}y^{3}}{x^{2}}\)
- step6: Multiply the terms:
\(\frac{x^{-4}y^{11}}{x^{2}}\)
- step7: Reduce the fraction:
\(\frac{y^{11}}{x^{6}}\)
Calculate or simplify the expression \( (2*a^3*3*a^2/(6*(a^3)^2))^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{2a^{3}\times 3a^{2}}{\left(6\left(a^{3}\right)^{2}\right)}\right)^{2}\)
- step1: Remove the parentheses:
\(\left(\frac{2a^{3}\times 3a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2}\)
- step2: Multiply the exponents:
\(\left(\frac{2a^{3}\times 3a^{2}}{6a^{3\times 2}}\right)^{2}\)
- step3: Multiply by \(a^{-n}:\)
\(\left(\frac{2a^{3}\times 3a^{2}\times a^{-3\times 2}}{6}\right)^{2}\)
- step4: Multiply the numbers:
\(\left(\frac{2a^{3}\times 3a^{2}\times a^{-6}}{6}\right)^{2}\)
- step5: Reduce the fraction:
\(\left(\frac{1}{a}\right)^{2}\)
- step6: Evaluate the power:
\(a^{-2}\)
- step7: Simplify:
\(\frac{1}{a^{2}}\)
Calculate or simplify the expression \( (16*x^5*y/(8*x*y^4))^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{16x^{5}y}{8xy^{4}}\right)^{3}\)
- step1: Divide the terms:
\(\left(\frac{2x^{4}}{y^{3}}\right)^{3}\)
- step2: Rewrite the expression:
\(\frac{\left(2x^{4}\right)^{3}}{\left(y^{3}\right)^{3}}\)
- step3: Evaluate the power:
\(\frac{8x^{12}}{y^{9}}\)
Calculate or simplify the expression \( (3*a^4/5*b^6)^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{3a^{4}}{5}b^{6}\right)^{2}\)
- step1: Multiply the terms:
\(\left(\frac{3a^{4}b^{6}}{5}\right)^{2}\)
- step2: Rewrite the expression:
\(\frac{\left(3a^{4}b^{6}\right)^{2}}{5^{2}}\)
- step3: Evaluate the power:
\(\frac{9a^{8}b^{12}}{25}\)
Calculate or simplify the expression \( (3*p^3*q^2/(9*p^5)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3p^{3}q^{2}}{9p^{5}}\)
- step1: Reduce the fraction:
\(\frac{3q^{2}}{9p^{5-3}}\)
- step2: Reduce the fraction:
\(\frac{3q^{2}}{9p^{2}}\)
- step3: Reduce the fraction:
\(\frac{q^{2}}{3p^{2}}\)
Here are the simplified results for each of the expressions provided:
### Simplifications:
(a)
\[
\left(\frac{3 a^{4}}{5 b^{6}}\right)^{2} = \frac{9a^{8}}{25b^{12}}
\]
(b)
\[
\left(\frac{16 x^{5} y}{8 x y^{4}}\right)^{3} = \frac{8x^{12}}{y^{9}}
\]
(c)
\[
\left(\frac{3 p^{3} q^{2}}{9 p^{5}}\right) = \frac{q^{2}}{3p^{2}}
\]
(d)
\[
\left(\frac{6 x^{7}}{12 x^{9}}\right)^{-2} = 4x^{4}
\]
(e)
\[
\left(\frac{2 a^{3} \cdot 3 a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2} = \frac{1}{a^{2}}
\]
(f)
\[
\left(\frac{x^{3}+x^{3}}{x^{3} \times x^{3}}\right) = \frac{2}{x^{3}}
\]
(g)
\[
\frac{\left(x^{-2} y^{4}\right)^{2}}{x^{2} y^{-3}} = \frac{y^{11}}{x^{6}}
\]
(h)
\[
\frac{2\left(a^{-2} b^{2}\right)^{-3} \times(a b)^{-6}}{\left(2 b^{-6}\right)^{2}} = \frac{1}{2}
\]
These results provide the simplified forms of the given expressions. If you have any further questions or need additional assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución