Pregunta
upstudy study bank question image url

(a) \( \left(x^{3}\right)^{4} \) (b) \( \quad\left(x^{2}\right)^{5} \) (c) \( \quad\left(x^{2}\right)^{2} \) (d) \( \quad(x)^{3} \) (e) \( \left(3^{2}\right)^{3} \) (f) \( \quad\left(5^{4}\right)^{4} \) (g) \( \quad\left(4 x^{3}\right)^{3} \) (h) \( \quad\left(7 a^{7}\right)^{2} \) (i) \( \left(-4 x^{3}\right)^{3} \) (j) \( \quad\left(-4 x^{3}\right)^{4} \) (k) \( \left(x^{4}\right)^{2}+\left(x^{2}\right)^{4} \) (l) \( \quad 3\left(x^{4}\right)^{2}+2\left(x^{2}\right)^{4} \) (m) \( \quad\left(x^{4}\right)^{2} \cdot\left(x^{2}\right)^{4} \) (n) \( \quad 3\left(x^{4}\right)^{2} \times 2\left(x^{2}\right)^{4} \) (o) \( \quad\left(3 x^{4}\right)^{2}+\left(2 x^{2}\right)^{4} \) (p) \( \quad 3\left(2 a^{3}\right)^{2}+2\left(3 a^{2}\right)^{3} \) (q) \( \left(3 x^{4}\right)^{2} \cdot\left(2 x^{2}\right)^{4} \) (r) \( 3\left(2 a^{3}\right)^{2} \times 2\left(3 a^{2}\right)^{3} \) Simplify the following: (a) \( \left(\frac{3 a^{4}}{5 b^{6}}\right)^{2} \) (b) \( \left(\frac{16 x^{5} y}{8 x y^{4}}\right)^{3} \) (c) \( \quad\left(\frac{3 p^{3} q^{2}}{9 p^{5}}\right. \) (d) \( \left(\frac{6 x^{7}}{12 x^{9}}\right)^{-2} \) (e) \( \left(\frac{2 a^{3} \cdot 3 a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2} \) (f) \( \quad\left(\frac{x^{3}+x^{3}}{x^{3} \times x^{3}}\right. \) (g) \( \frac{\left(x^{-2} y^{4}\right)^{2}}{x^{2} y^{-3}} \) (h) \( \frac{2\left(a^{-2} b^{2}\right)^{-3} \times(a b)^{-6}}{\left(2 b^{-6}\right)^{2}} \)

Ask by Peters Alexander. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for each expression: (a) \( \frac{9a^{8}}{25b^{12}} \) (b) \( \frac{8x^{12}}{y^{9}} \) (c) \( \frac{q^{2}}{3p^{2}} \) (d) \( 4x^{4} \) (e) \( \frac{1}{a^{2}} \) (f) \( \frac{2}{x^{3}} \) (g) \( \frac{y^{11}}{x^{6}} \) (h) \( \frac{1}{2} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(\left(\frac{6x^{7}}{\left(12x^{9}\right)}\right)^{-2}\) - step1: Evaluate: \(\left(\frac{6x^{7}}{12x^{9}}\right)^{-2}\) - step2: Divide the terms: \(\left(\frac{1}{2x^{2}}\right)^{-2}\) - step3: Evaluate the power: \(\left(2x^{2}\right)^{2}\) - step4: Use the properties of exponents: \(2^{2}\left(x^{2}\right)^{2}\) - step5: Evaluate the power: \(4x^{4}\) Calculate or simplify the expression \( ((x^3+x^3)/(x^3*x^3)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x^{3}+x^{3}\right)}{\left(x^{3}\times x^{3}\right)}\) - step1: Remove the parentheses: \(\frac{x^{3}+x^{3}}{x^{3}\times x^{3}}\) - step2: Multiply the terms: \(\frac{x^{3}+x^{3}}{x^{6}}\) - step3: Add the terms: \(\frac{2x^{3}}{x^{6}}\) - step4: Reduce the fraction: \(\frac{2}{x^{6-3}}\) - step5: Reduce the fraction: \(\frac{2}{x^{3}}\) Calculate or simplify the expression \( (2*(a^(-2)*b^2)^(-3)*(a*b)^(-6))/((2*b^(-6))^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}\right)}{\left(\left(2b^{-6}\right)^{2}\right)}\) - step1: Evaluate: \(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}\right)}{\left(2b^{-6}\right)^{2}}\) - step2: Remove the parentheses: \(\frac{2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}}{\left(2b^{-6}\right)^{2}}\) - step3: Factor the expression: \(\frac{2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}}{2^{2}b^{-12}}\) - step4: Reduce the fraction: \(\frac{\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)^{-6}}{2b^{-12}}\) - step5: Evaluate the power: \(\frac{a^{6}b^{-6}\left(ab\right)^{-6}}{2b^{-12}}\) - step6: Use the properties of exponents: \(\frac{a^{6}b^{-6}a^{-6}b^{-6}}{2b^{-12}}\) - step7: Simplify: \(\frac{b^{-12}}{2b^{-12}}\) - step8: Reduce the fraction: \(\frac{1}{2}\) Calculate or simplify the expression \( ((x^(-2)*y^4)^2)/(x^2*y^(-3)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\left(x^{-2}y^{4}\right)^{2}\right)}{\left(x^{2}y^{-3}\right)}\) - step1: Evaluate: \(\frac{\left(x^{-2}y^{4}\right)^{2}}{\left(x^{2}y^{-3}\right)}\) - step2: Remove the parentheses: \(\frac{\left(x^{-2}y^{4}\right)^{2}}{x^{2}y^{-3}}\) - step3: Rewrite the expression: \(\frac{\left(x^{-2}y^{4}\right)^{2}}{\frac{x^{2}}{y^{3}}}\) - step4: Multiply by the reciprocal: \(\left(x^{-2}y^{4}\right)^{2}\times \frac{y^{3}}{x^{2}}\) - step5: Multiply the terms: \(\frac{\left(x^{-2}y^{4}\right)^{2}y^{3}}{x^{2}}\) - step6: Multiply the terms: \(\frac{x^{-4}y^{11}}{x^{2}}\) - step7: Reduce the fraction: \(\frac{y^{11}}{x^{6}}\) Calculate or simplify the expression \( (2*a^3*3*a^2/(6*(a^3)^2))^2 \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{2a^{3}\times 3a^{2}}{\left(6\left(a^{3}\right)^{2}\right)}\right)^{2}\) - step1: Remove the parentheses: \(\left(\frac{2a^{3}\times 3a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2}\) - step2: Multiply the exponents: \(\left(\frac{2a^{3}\times 3a^{2}}{6a^{3\times 2}}\right)^{2}\) - step3: Multiply by \(a^{-n}:\) \(\left(\frac{2a^{3}\times 3a^{2}\times a^{-3\times 2}}{6}\right)^{2}\) - step4: Multiply the numbers: \(\left(\frac{2a^{3}\times 3a^{2}\times a^{-6}}{6}\right)^{2}\) - step5: Reduce the fraction: \(\left(\frac{1}{a}\right)^{2}\) - step6: Evaluate the power: \(a^{-2}\) - step7: Simplify: \(\frac{1}{a^{2}}\) Calculate or simplify the expression \( (16*x^5*y/(8*x*y^4))^3 \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{16x^{5}y}{8xy^{4}}\right)^{3}\) - step1: Divide the terms: \(\left(\frac{2x^{4}}{y^{3}}\right)^{3}\) - step2: Rewrite the expression: \(\frac{\left(2x^{4}\right)^{3}}{\left(y^{3}\right)^{3}}\) - step3: Evaluate the power: \(\frac{8x^{12}}{y^{9}}\) Calculate or simplify the expression \( (3*a^4/5*b^6)^2 \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{3a^{4}}{5}b^{6}\right)^{2}\) - step1: Multiply the terms: \(\left(\frac{3a^{4}b^{6}}{5}\right)^{2}\) - step2: Rewrite the expression: \(\frac{\left(3a^{4}b^{6}\right)^{2}}{5^{2}}\) - step3: Evaluate the power: \(\frac{9a^{8}b^{12}}{25}\) Calculate or simplify the expression \( (3*p^3*q^2/(9*p^5)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{3p^{3}q^{2}}{9p^{5}}\) - step1: Reduce the fraction: \(\frac{3q^{2}}{9p^{5-3}}\) - step2: Reduce the fraction: \(\frac{3q^{2}}{9p^{2}}\) - step3: Reduce the fraction: \(\frac{q^{2}}{3p^{2}}\) Here are the simplified results for each of the expressions provided: ### Simplifications: (a) \[ \left(\frac{3 a^{4}}{5 b^{6}}\right)^{2} = \frac{9a^{8}}{25b^{12}} \] (b) \[ \left(\frac{16 x^{5} y}{8 x y^{4}}\right)^{3} = \frac{8x^{12}}{y^{9}} \] (c) \[ \left(\frac{3 p^{3} q^{2}}{9 p^{5}}\right) = \frac{q^{2}}{3p^{2}} \] (d) \[ \left(\frac{6 x^{7}}{12 x^{9}}\right)^{-2} = 4x^{4} \] (e) \[ \left(\frac{2 a^{3} \cdot 3 a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2} = \frac{1}{a^{2}} \] (f) \[ \left(\frac{x^{3}+x^{3}}{x^{3} \times x^{3}}\right) = \frac{2}{x^{3}} \] (g) \[ \frac{\left(x^{-2} y^{4}\right)^{2}}{x^{2} y^{-3}} = \frac{y^{11}}{x^{6}} \] (h) \[ \frac{2\left(a^{-2} b^{2}\right)^{-3} \times(a b)^{-6}}{\left(2 b^{-6}\right)^{2}} = \frac{1}{2} \] These results provide the simplified forms of the given expressions. If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When it comes to simplifying algebraic expressions, knowing the laws of exponents is like having a treasure map! Each exponent rule tells you how to navigate through the complex seas of multiplication and division. For example, \( (a^m)^n = a^{mn} \) allows you to streamline expressions and make calculations a breeze. Embrace these laws, and you'll become an algebra explorer, uncovering the secrets behind numbers! In the real world, algebraic simplifications come in handy when trying to solve practical problems, like calculating areas, volumes, or even in finance for compounded interests. Imagine you’re calculating the volume of a cylindrical container where height and radius need to be combined with complex ratios; simplifying those ratios with the help of exponent rules makes life so much easier! Understanding how to simplify expressions opens doors to solving real-life problems with mathematical finesse.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad