Pregunta
\[ \text{Find } 2011^2 - 2010^2 \text{?} \]
Ask by Barnett Goodwin. in South Africa
Feb 16,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
2011² - 2010² equals 4021.
Solución
We can use the difference of squares formula, which states that for any numbers a and b:
a² - b² = (a + b)(a - b).
Here, a = 2011 and b = 2010.
Substituting these values in:
2011² - 2010² = (2011 + 2010)(2011 - 2010)
= (4021)(1)
= 4021.
Thus, 2011² - 2010² equals 4021.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To solve \( 2011^2 - 2010^2 \), we can use the difference of squares formula, which states that \( a^2 - b^2 = (a - b)(a + b) \). Here, \( a = 2011 \) and \( b = 2010 \). Calculating, we have: \[ 2011^2 - 2010^2 = (2011 - 2010)(2011 + 2010) = 1 \times (2011 + 2010) = 1 \times 4021 = 4021 \] Thus, the answer is \( 4021 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium