Pregunta
upstudy study bank question image url

Which of the following side lengths would make up a right triangle? \( 3,6,9 \) \( 7,24,25 \) \( 14.2,124,16.5 \) \( 1.5,1.5,3 \)

Ask by Evans Schofield. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The set 7, 24, 25 forms a right triangle.

Solución

To determine which set of side lengths can form a right triangle, we can check if they satisfy both the triangle inequality and the Pythagorean theorem. 1. For lengths 3, 6, 9: - Triangle inequality: 3 + 6 = 9. Since the sum equals (but does not exceed) the third side, these sides form a degenerate triangle (a "line" rather than a true triangle), so they do not work. 2. For lengths 7, 24, 25: - Triangle inequality: 7 + 24 = 31, which is greater than 25, and the other sums also satisfy the inequality. - Pythagorean theorem: Check if 7² + 24² = 25² • 7² = 49, 24² = 576; 49 + 576 = 625 • 25² = 625 Since 625 = 625, the Pythagorean theorem holds true. - Thus, these sides do indeed form a right triangle. 3. For lengths 14.2, 124, 16.5: - Sorting: 14.2, 16.5, 124 - Triangle inequality: 14.2 + 16.5 = 30.7, which is much less than 124. Therefore, no triangle can be formed. 4. For lengths 1.5, 1.5, 3: - Triangle inequality: 1.5 + 1.5 = 3, which equals the third side. As with the first set, this is degenerate (it lies on a straight line) and does not form a proper triangle. Conclusion: Only the set 7, 24, 25 forms a valid right triangle.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine if three side lengths can form a right triangle, we can use the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides. For the sets provided: 1. **\( 3, 6, 9 \)**: \( 9^2 = 81 \) and \( 3^2 + 6^2 = 9 + 36 = 45 \) (not a right triangle) 2. **\( 7, 24, 25 \)**: \( 25^2 = 625 \) and \( 7^2 + 24^2 = 49 + 576 = 625 \) (a right triangle) 3. **\( 14.2, 124, 16.5 \)**: \( 124^2 = 15376 \) and \( 14.2^2 + 16.5^2 = 201.64 + 272.25 = 473.89 \) (not a right triangle) 4. **\( 1.5, 1.5, 3 \)**: \( 3^2 = 9 \) and \( 1.5^2 + 1.5^2 = 2.25 + 2.25 = 4.5 \) (not a right triangle) So, only \( 7, 24, 25 \) can form a right triangle! Now, how about testing out your triangle knowledge with a classic in geometry? The triangle inequality theorem states that the sum of the lengths of any two sides must be greater than the length of the third side. It's a useful tool to rule out non-triangles before you even get to the right or acute angles! And don’t forget, if you want to dive deeper into the magic of triangles, consider checking out Euclid's "Elements." It’s like the celestial map of geometry, laying down not only the sides of triangles but also the angles and principles that govern their entire universe!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad