Pregunta
Factor the perfect square trinomial: \( 4y^{2} - 20y + 25 \)
Ask by Fernandez Macdonald. in South Africa
Jan 20,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( (2y - 5)^2 \)
Solución
To factor the perfect square trinomial \( 4y^{2} - 20y + 25 \), follow these steps:
1. **Identify the Structure:**
A perfect square trinomial has the form:
\[
(ay + b)^2 = a^2y^2 + 2aby + b^2
\]
or
\[
(ay - b)^2 = a^2y^2 - 2aby + b^2
\]
2. **Determine \( a \) and \( b \):**
Compare \( 4y^{2} - 20y + 25 \) with the general form \( (ay - b)^2 \):
- \( a^2y^2 = 4y^2 \) ⇒ \( a^2 = 4 \) ⇒ \( a = 2 \)
- \( b^2 = 25 \) ⇒ \( b = 5 \)
3. **Verify the Middle Term:**
Check if the middle term matches:
\[
-2ab y = -2 \times 2 \times 5 \times y = -20y
\]
This matches the given middle term \( -20y \).
4. **Write the Factored Form:**
Using the values of \( a \) and \( b \), the factored form is:
\[
(2y - 5)^2
\]
**Final Answer:**
\[
(2y - 5)^{2}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To factor the perfect square trinomial \( 4y^{2} - 20y + 25 \), we start by recognizing that it can be expressed in the form \( (ay - b)^{2} \). The first term, \( 4y^{2} \), can be rewritten as \( (2y)^{2} \), and the last term, \( 25 \), is \( 5^{2} \). Now, we check twice the product of the outer factors, which is \( 2 \cdot 2y \cdot 5 = 20y \). So, we can factor the trinomial as: \[ (2y - 5)^{2} \] Now let's summarize: The factored form of \( 4y^{2} - 20y + 25 \) is \( (2y - 5)^{2} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium