Pregunta

Calculate the value of \( n \) if it is given that: \( \sum_{k=2}^{n}(5-2 k)=-\frac{800 n}{17} \)

Ask by Kirk Knight. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( n = 51 \)

Solución

To solve for \( n \) in the equation \[ \sum_{k=2}^{n}(5-2k)=-\frac{800 n}{17}, \] we first need to evaluate the left-hand side, which is a summation. 1. **Calculate the summation**: The expression inside the summation is \( 5 - 2k \). We can separate the summation: \[ \sum_{k=2}^{n}(5-2k) = \sum_{k=2}^{n} 5 - \sum_{k=2}^{n} 2k. \] The first part, \( \sum_{k=2}^{n} 5 \), can be calculated as follows: - The number of terms from \( k=2 \) to \( k=n \) is \( n - 1 \). - Therefore, \[ \sum_{k=2}^{n} 5 = 5(n - 1). \] The second part, \( \sum_{k=2}^{n} 2k \), can be simplified: \[ \sum_{k=2}^{n} 2k = 2 \sum_{k=2}^{n} k = 2 \left( \frac{n(n + 1)}{2} - 1 \right) = n(n + 1) - 2. \] Putting it all together, we have: \[ \sum_{k=2}^{n}(5-2k) = 5(n - 1) - (n(n + 1) - 2). \] Simplifying this expression: \[ = 5n - 5 - n^2 - n + 2 = -n^2 + 4n - 3. \] 2. **Set the summation equal to the right-hand side**: Now we set the left-hand side equal to the right-hand side: \[ -n^2 + 4n - 3 = -\frac{800 n}{17}. \] To eliminate the fraction, we can multiply through by 17: \[ 17(-n^2 + 4n - 3) = -800n. \] This simplifies to: \[ -17n^2 + 68n - 51 = -800n. \] Rearranging gives: \[ -17n^2 + 68n + 800n - 51 = 0, \] which simplifies to: \[ -17n^2 + 868n - 51 = 0. \] Multiplying through by -1 to make the leading coefficient positive: \[ 17n^2 - 868n + 51 = 0. \] 3. **Solve the quadratic equation**: We can use the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 17 \), \( b = -868 \), and \( c = 51 \): \[ n = \frac{868 \pm \sqrt{(-868)^2 - 4 \cdot 17 \cdot 51}}{2 \cdot 17}. \] First, calculate the discriminant: \[ (-868)^2 = 752624, \] \[ 4 \cdot 17 \cdot 51 = 3468, \] \[ 752624 - 3468 = 749156. \] Now, calculate \( \sqrt{749156} \): \[ \sqrt{749156} \approx 866.5. \] Now substituting back into the quadratic formula: \[ n = \frac{868 \pm 866.5}{34}. \] This gives us two potential solutions: \[ n_1 = \frac{1734.5}{34} \approx 51, \] \[ n_2 = \frac{1.5}{34} \approx 0.044. \] Since \( n \) must be a positive integer, we take \( n = 51 \). Thus, the value of \( n \) is \[ \boxed{51}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( \sum_{k=2}^{n}(5-2 k)=-\frac{800 n}{17} \), we start by calculating the left-hand side of the equation, which is the summation of the expression \( (5 - 2k) \). 1. **Calculate the summation**: \[ S = \sum_{k=2}^{n} (5 - 2k) = \sum_{k=2}^{n} 5 - \sum_{k=2}^{n} 2k \] The first term can be simplified: \[ \sum_{k=2}^{n} 5 = 5(n - 1) \] because there are \( n - 1 \) terms from \( k=2 \) to \( k=n \). For the second term: \[ \sum_{k=2}^{n} 2k = 2\sum_{k=2}^{n} k = 2\left(\frac{n(n+1)}{2} - 1\right) = n(n+1) - 2 \] Thus we have: \[ S = 5(n - 1) - (n(n + 1) - 2) = 5n - 5 - n(n + 1) + 2 = 5n - n^2 - n - 5 + 2 = -n^2 + 4n - 3 \] 2. **Set up the equation**: Now we equate this to the right-hand side: \[ -n^2 + 4n - 3 = -\frac{800n}{17} \] 3. **Multiply through by 17 to eliminate the fraction**: \[ -17n^2 + 68n - 51 = -800n \] Rearranging gives: \[ -17n^2 + 68n + 800n - 51 = 0 \implies -17n^2 + 868n - 51 = 0 \] We can multiply through by -1 for convenience: \[ 17n^2 - 868n + 51 = 0 \] 4. **Use the quadratic formula**: The quadratic formula is given by: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here \( a = 17 \), \( b = -868 \), and \( c = 51 \). Calculate the discriminant: \[ b^2 - 4ac = (-868)^2 - 4 \times 17 \times 51 = 752624 - 3468 = 749156 \] Finding the square root of the discriminant: \[ \sqrt{749156} \approx 866.6 \] Now plug into the quadratic formula: \[ n = \frac{868 \pm 866.6}{34} \] This results in two possible values: - \( n_1 \approx \frac{1734.6}{34} \approx 51 \) - \( n_2 \approx \frac{1.4}{34} \approx 0.04 \) (not valid since \( n \) must be an integer and greater than or equal to 2) Thus, the only viable solution is: \[ \boxed{51} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad