Pregunta
upstudy study bank question image url

Matching graphs with polynomial functions Consider the following polynomial functions. \[ \begin{array}{l}f(x)=(x+1)^{2}(x-3) \\ h(x)=x^{4}-3 x^{3}\end{array} \] Choose the graph of each function from the choices below.

Ask by Matthews Fuentes. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To match the graphs with the polynomial functions: - **\( f(x) = (x+1)^2(x-3) \)**: - Degree: 3 - Roots: \( x = -1 \) (touching the x-axis) and \( x = 3 \) (crossing the x-axis) - End behavior: Down to up - **\( h(x) = x^4 - 3x^3 \)**: - Degree: 4 - Roots: \( x = 0 \) (touching the x-axis) and \( x = 3 \) (crossing the x-axis) - End behavior: Up to up Choose the graphs that reflect these characteristics.

Solución

To match the graphs with the polynomial functions \( f(x) \) and \( h(x) \), we need to analyze the characteristics of each function. ### Step 1: Analyze \( f(x) = (x+1)^{2}(x-3) \) 1. **Degree**: The degree of \( f(x) \) is \( 3 \) (since \( (x+1)^2 \) contributes \( 2 \) and \( (x-3) \) contributes \( 1 \)). 2. **Roots**: The roots of \( f(x) \) are: - \( x = -1 \) (with multiplicity \( 2 \)) - \( x = 3 \) (with multiplicity \( 1 \)) 3. **Behavior at Roots**: - At \( x = -1 \), the graph will touch the x-axis and turn around (since the root has even multiplicity). - At \( x = 3 \), the graph will cross the x-axis (since the root has odd multiplicity). 4. **End Behavior**: As \( x \to -\infty \), \( f(x) \to -\infty \) and as \( x \to +\infty \), \( f(x) \to +\infty \). ### Step 2: Analyze \( h(x) = x^{4} - 3x^{3} \) 1. **Degree**: The degree of \( h(x) \) is \( 4 \). 2. **Roots**: To find the roots, we can factor: \[ h(x) = x^{3}(x - 3) \] The roots are: - \( x = 0 \) (with multiplicity \( 3 \)) - \( x = 3 \) (with multiplicity \( 1 \)) 3. **Behavior at Roots**: - At \( x = 0 \), the graph will touch the x-axis and turn around (since the root has odd multiplicity). - At \( x = 3 \), the graph will cross the x-axis (since the root has odd multiplicity). 4. **End Behavior**: As \( x \to -\infty \), \( h(x) \to +\infty \) and as \( x \to +\infty \), \( h(x) \to +\infty \). ### Step 3: Summary of Characteristics - **\( f(x) \)**: - Degree: 3 - Roots: \( -1 \) (touch) and \( 3 \) (cross) - End behavior: Down to up - **\( h(x) \)**: - Degree: 4 - Roots: \( 0 \) (touch) and \( 3 \) (cross) - End behavior: Up to up ### Step 4: Match with Graphs Now, you would need to look at the provided graph options and match them based on the characteristics outlined above. - Look for a graph that has a cubic shape (for \( f(x) \)) with a turning point at \( x = -1 \) and crossing at \( x = 3 \). - Look for a graph that has a quartic shape (for \( h(x) \)) that touches the x-axis at \( x = 0 \) and crosses at \( x = 3 \), with both ends going upwards. If you provide the graph options, I can help you identify which graph corresponds to each function.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When examining the polynomial function \(f(x)=(x+1)^{2}(x-3)\), you'll notice it has a double root at \(x = -1\) and a single root at \(x = 3\). This means the graph will touch the x-axis at \(x = -1\) and cross it at \(x = 3\). The function is shaped like a "valley" touching at the vertex, then rising along the right. Now, looking at \(h(x)=x^{4}-3 x^{3}\), it can be factored as \(h(x) = x^3(x - 3)\), indicating it has a triple root at \(x = 0\) and a single root at \(x = 3\). This means the graph will flatten out at the origin but will cross the x-axis at \(x = 3\), lending it a "W" shape which opens upwards.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad