Pregunta
upstudy study bank question image url

Word problem involving the probability of a union In a packet of stickers there are 4 small stars, 9 small rockets, and 10 big rockets. But, there are no big stars. Rafael is going to choose one of these stickers from the packet at random to put on his artwork. What is the probability that the sticker Rafael chooses is big or is a star? Do not round intermediate computations, and round your answer to the nearest hundredth.

Ask by Dawson Carter. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that Rafael chooses a sticker that is either big or a star is 0.61.

Solución

Count the total number of stickers in the packet and then find how many are either big or a star. Step 1: Calculate the total number of stickers. • Small stars = 4 • Small rockets = 9 • Big rockets = 10 Total stickers = 4 + 9 + 10 = 23 Step 2: Identify the stickers that satisfy "big or a star." • There are no big stars, so the stars are only the small stars (4 stickers). • The “big” stickers are the big rockets (10 stickers). Total stickers that are big or a star = 4 + 10 = 14 Step 3: Calculate the probability. Probability = (Favorable outcomes) / (Total outcomes) = 14/23 ≈ 0.6087 Rounded to the nearest hundredth, the probability is 0.61. Thus, the probability that Rafael chooses a sticker that is either big or a star is 0.61.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability that Rafael chooses either a big sticker or a star sticker, we first need to identify our total number of stickers and the number of favorable outcomes. Total stickers = 4 (small stars) + 9 (small rockets) + 10 (big rockets) = 23 stickers. Now we calculate the number of big stickers and star stickers: - There are 0 big stars (as stated). - There are 10 big rockets. - There are 4 small stars. The probability of selecting a big sticker (big rockets) or a star sticker (small stars) can be formulated as follows: P(bigger sticker or star) = P(big stickers) + P(star stickers) - P(big stars). Since there are no big stars, P(big stars) = 0. Calculating the individual probabilities: P(big stickers) = Number of big rockets / Total stickers = 10/23, P(star stickers) = Number of small stars / Total stickers = 4/23. Now let's compute the total probability: P(big or star) = P(big stickers) + P(star stickers) - P(big stars) = (10/23) + (4/23) - 0 = (10 + 4) / 23 = 14 / 23. Now, we need to convert this to a decimal and round it to the nearest hundredth: 14 / 23 ≈ 0.6087. When rounded to the nearest hundredth, the final answer is: **0.61.**

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad