Pregunta
upstudy study bank question image url

Jessie is playing a dice game and bets \( \$ 6 \) on her first roll. If a 10 , 7 , or 4 is rolled, she wins \( \$ 6 \). This happens with a probability of \( \frac{1}{3} \). If an 8 or 2 is rolled, she loses her \( \$ 6 \). This has a probability of \( \frac{1}{6} \). If any other number is rolled, she does not win or lose, and the game continues. Find the expected value for Jessie on her first roll. Round to the nearest cent if necessary. Do not round until the final calculation.

Ask by Turnbull Hart. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Jessie's expected value on her first roll is $1.00.

Solución

Jessie's expected value on her first roll is calculated by considering each possible outcome: 1. With probability 1/3, she wins $6. 2. With probability 1/6, she loses $6. 3. With the remaining probability (1 - 1/3 - 1/6 = 1/2), nothing happens and her net gain is $0. Thus, the expected value (EV) is:   EV = (1/3 × $6) + (1/6 × -$6) + (1/2 × $0)     = $2 - $1 + $0     = $1. So, her expected value on the first roll is $1.00.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the expected value for Jessie on her first roll, we need to consider the outcomes and their probabilities. 1. Jessie wins \( \$6 \) with a probability of \( \frac{1}{3} \). 2. Jessie loses \( \$6 \) with a probability of \( \frac{1}{6} \). 3. In the remaining cases, her total remains the same (no win or loss). The total probability of not winning or losing is the complementary probability: \[ 1 - \left(\frac{1}{3} + \frac{1}{6}\right) = 1 - \frac{2}{6} - \frac{1}{6} = 1 - \frac{3}{6} = \frac{3}{6} = \frac{1}{2}. \] Now we'll calculate the expected value (EV) based on the winnings and losses: - Winning \( \$6 \) with probability \( \frac{1}{3} \): \[ EV_{\text{win}} = 6 \times \frac{1}{3} = 2. \] - Losing \( \$6 \) with probability \( \frac{1}{6} \): \[ EV_{\text{loss}} = -6 \times \frac{1}{6} = -1. \] - No win or loss (which can be considered \( \$0 \) gain) with probability \( \frac{1}{2} \): \[ EV_{\text{no change}} = 0 \times \frac{1}{2} = 0. \] Now, combine all the expected values: \[ EV = EV_{\text{win}} + EV_{\text{loss}} + EV_{\text{no change}} = 2 - 1 + 0 = 1. \] Therefore, the expected value for Jessie on her first roll is \( \boxed{1} \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad