Find the average rate of change for the given function. \( f(x)=x^{2}+4 x \) between \( x=0 \) and \( x=6 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the average rate of change of the function \( f(x) = x^2 + 4x \) between \( x = 0 \) and \( x = 6 \), we use the formula: \[ \text{Average Rate of Change} = \frac{f(b) - f(a)}{b - a} \] Here, \( a = 0 \) and \( b = 6 \). First, calculate \( f(0) \) and \( f(6) \): 1. \( f(0) = 0^2 + 4(0) = 0 \) 2. \( f(6) = 6^2 + 4(6) = 36 + 24 = 60 \) Now, substitute these values into the formula: \[ \text{Average Rate of Change} = \frac{60 - 0}{6 - 0} = \frac{60}{6} = 10 \] Therefore, the average rate of change of the function \( f(x) \) between \( x = 0 \) and \( x = 6 \) is \( 10 \).
preguntas relacionadas
