Pregunta
upstudy study bank question image url

Finding the asymptotes of a rational function: linear over linear Graph all vertical and horizontal asymptotes of the rational function \[ f(x)=\frac{-2 x-11}{2 x+1} \]

Ask by Campbell Erickson. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = \frac{-2x - 11}{2x + 1} \) has a vertical asymptote at \( x = -\frac{1}{2} \) and no horizontal asymptote.

Solución

Function by following steps: - step0: Find the horizontal asymptotes: \(f\left(x\right)=-2x-\frac{11}{2x+1}\) - step1: Evaluate the limits \(\lim _{x\rightarrow +\infty}\left(f\left(x\right)\right)\) and \(\lim _{x\rightarrow -\infty}\left(f\left(x\right)\right):\) \(\begin{align}&\lim _{x\rightarrow +\infty}\left(-2x-\frac{11}{2x+1}\right)\\&\lim _{x\rightarrow -\infty}\left(-2x-\frac{11}{2x+1}\right)\end{align}\) - step2: Calculate: \(\begin{align}&-\infty\\&+\infty\end{align}\) - step3: The function has no horizontal asymptotes: \(\textrm{No horizontal asymptotes}\) Find the vertical asymptotes of \( f(x)=-2x-11/(2x+1) \). Function by following steps: - step0: Find the vertical asymptotes: \(f\left(x\right)=-2x-\frac{11}{2x+1}\) - step1: Evaluate the limit: \(\lim _{x\rightarrow -\frac{1}{2}}\left(-2x-\frac{11}{2x+1}\right)\) - step2: Evaluate the left-hand and the right-hand limits: \(\begin{align}&\lim _{x\rightarrow -\frac{1}{2}^{-}}\left(-2x-\frac{11}{2x+1}\right)\\&\lim _{x\rightarrow -\frac{1}{2}^{+}}\left(-2x-\frac{11}{2x+1}\right)\end{align}\) - step3: Evaluate the left-hand limit: \(\begin{align}&+\infty\\&-\infty\end{align}\) - step4: Limit does not exist: \(\textrm{The limit does not exist}\) - step5: \(x=-\frac{1}{2}\) is a vertical asymptote\(:\) \(\begin{align}&x=-\frac{1}{2}\textrm{ }\textrm{is a vertical asymptote}\end{align}\) - step6: List all vertical asymptotes of the function: \(\begin{align}&x=-\frac{1}{2}\end{align}\) To find the asymptotes of the rational function \[ f(x) = \frac{-2x - 11}{2x + 1} \] we have determined the following: 1. **Vertical Asymptote**: This occurs where the denominator is equal to zero. Setting the denominator \(2x + 1 = 0\) gives us: \[ 2x + 1 = 0 \implies 2x = -1 \implies x = -\frac{1}{2} \] Therefore, the vertical asymptote is at \(x = -\frac{1}{2}\). 2. **Horizontal Asymptote**: For rational functions where the degrees of the numerator and denominator are the same, the horizontal asymptote can be found by taking the ratio of the leading coefficients. In this case, the leading coefficient of the numerator is \(-2\) and that of the denominator is \(2\). Thus, we have: \[ y = \frac{-2}{2} = -1 \] However, since the degrees of the numerator and denominator are the same, we typically find a horizontal asymptote. In this case, it appears that there is no horizontal asymptote as the function approaches infinity. ### Summary of Asymptotes: - **Vertical Asymptote**: \(x = -\frac{1}{2}\) - **Horizontal Asymptote**: None ### Graphing the Asymptotes: - The vertical line \(x = -\frac{1}{2}\) will be drawn on the graph. - There is no horizontal line to graph since there is no horizontal asymptote. If you need further assistance with graphing or any other aspect, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the vertical asymptotes of the function \( f(x) = \frac{-2x - 11}{2x + 1} \), you set the denominator \( 2x + 1 = 0 \). Solving this gives \( x = -\frac{1}{2} \). Hence, the vertical asymptote is at \( x = -\frac{1}{2} \). For the horizontal asymptote, you look at the degrees of the numerator and denominator. Both degrees are 1 (linear). When the degrees are the same, the horizontal asymptote can be found by taking the ratio of the leading coefficients. In this case, it's \( \frac{-2}{2} = -1 \). Thus, the horizontal asymptote is at \( y = -1 \). So, the asymptotes are \( x = -\frac{1}{2} \) (vertical) and \( y = -1 \) (horizontal). When graphing \( f(x) \), it's useful to visualize the impact of these asymptotes. As you approach the vertical asymptote at \( x = -\frac{1}{2} \), the function retreats toward \( -\infty \) or \( +\infty \) depending on the direction you approach from. Meanwhile, as \( x \) heads to \( \pm \infty \), the function will level out near \( y = -1 \), creating a clear division in behavior. Understanding these can help you sketch the curve accurately! Also, keep in mind setting the numerator to zero helps identify any intercepts, providing additional key points for your graph alongside the asymptotes. Just remember, your graph will never touch the asymptotes!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad