Pregunta

12 The function \( f \) is defined for all real \( x \) by \( f(x)=\left\{\begin{array}{l}\frac{1}{x} \text { for } x>0 \\ x \mid \text { for } x \leq 0\end{array}\right. \) Find the set of values of \( x \) for which \( f(x) \leq 4 \)

Ask by Olson Turner. in Zambia
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The set of values of \( x \) for which \( f(x) \leq 4 \) is all real numbers less than or equal to 0 and all real numbers greater than or equal to \( \frac{1}{4} \).

Solución

To find the set of values of \( x \) for which \( f(x) \leq 4 \), we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} \frac{1}{x} & \text{for } x > 0 \\ x & \text{for } x \leq 0 \end{cases} \] We will consider both cases separately. ### Case 1: \( x > 0 \) In this case, \( f(x) = \frac{1}{x} \). We need to solve the inequality: \[ \frac{1}{x} \leq 4 \] To solve this, we can multiply both sides by \( x \) (noting that \( x > 0 \) means we do not change the direction of the inequality): \[ 1 \leq 4x \] Dividing both sides by 4 gives: \[ \frac{1}{4} \leq x \] Thus, for \( x > 0 \), the solution is: \[ x \in \left[\frac{1}{4}, \infty\right) \] ### Case 2: \( x \leq 0 \) In this case, \( f(x) = x \). We need to solve the inequality: \[ x \leq 4 \] Since \( x \) is already constrained to be less than or equal to 0, the solution for this case is: \[ x \in (-\infty, 0] \] ### Combining the Results Now we combine the results from both cases: 1. From Case 1: \( x \in \left[\frac{1}{4}, \infty\right) \) 2. From Case 2: \( x \in (-\infty, 0] \) Thus, the complete set of values of \( x \) for which \( f(x) \leq 4 \) is: \[ x \in (-\infty, 0] \cup \left[\frac{1}{4}, \infty\right) \] This is the final answer.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the set of values of \( x \) for which \( f(x) \leq 4 \), we analyze the function piece by piece. 1. For \( x > 0 \): Here, \( f(x) = \frac{1}{x} \). We want to solve the inequality: \[ \frac{1}{x} \leq 4 \] Multiplying both sides by \( x \) (which is positive, so the inequality sign stays the same), we get: \[ 1 \leq 4x \] Dividing both sides by 4, we have: \[ \frac{1}{4} \leq x \] So for \( x > 0 \), the solution set is: \[ x \in \left[\frac{1}{4}, \infty\right) \] 2. For \( x \leq 0 \): Here, \( f(x) = x \). We want to solve the inequality: \[ x \leq 4 \] Since \( x \) is already restricted to values less than or equal to 0, all values in this region satisfy the inequality: \[ x \in (-\infty, 0] \] Finally, we combine both results: - For \( x > 0 \), the solution is \( \left[\frac{1}{4}, \infty\right) \). - For \( x \leq 0 \), the solution is \( (-\infty, 0] \). Therefore, the set of values of \( x \) for which \( f(x) \leq 4 \) is: \[ x \in \left(-\infty, 0\right] \cup \left[\frac{1}{4}, \infty\right) \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad