Pregunta
upstudy study bank question image url

For the function \( \mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \), compute the following average rates of change. (a) From 1 to 2 (b) From 1 to 1.5 (c) From 1 to 1.1 (d) From 1 to 1.01 (e) From 1 to 1.001 (f) Use a graphing utility to graph each of the secant lines along with f . What do you think is happening to the secant lines? (g) To what number are the slopes of the secant lines getting closer? to \( \mathrm{x}=1.1 \) is \( <.1 \). (Type an integer or a decimal.) (d) The average rate of change of \( f \) from \( x=1 \) to \( x=1.01 \) is 2.01 . (Type an integer or a decimal.) (e) The average rate of change of \( f \) from \( x=1 \) to \( x=1.001 \) is 2.001 (Type an integer or a decimal.) (f) Which statement best describes what is happening to the secant lines? The slopes of the secant lines are getting smaller and smaller and the secant lines are beginning to look more and more like the graph of \( f \) at the point where \( x=1 \). The slopes of the secant lines are getting smaller and smaller and the secant lines are beginning to look more and more like the tangent line to the graph of \( f \) at the point where \( x=1 \). (g) The slopes of the secant lines are approaching \( \square \) (Type an integer.)

Ask by Lane Logan. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- (a) 3 - (b) 2.5 - (c) 2.1 - (d) 2.01 - (e) 2.001 - (f) The slopes of the secant lines are getting smaller and smaller and the secant lines are beginning to look more and more like the tangent line to the graph of \( f \) at the point where \( x=1 \). - (g) The slopes of the secant lines are approaching **2**.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

The average rate of change from \( x = 1 \) to \( x = 2 \) can be calculated using the formula \(\frac{f(b) - f(a)}{b - a}\). Plugging in our function, we find it equals \(3\). As we narrow the interval down to \(1.1\) and \(1.001\), notice how the value is gravitating towards \(2\) which aligns with the derivative of \(f(x)\) at \(x = 1\). As you graph these secant lines, you'll observe that they not only become steeper but also begin to resemble the tangent line at the point \(x = 1\). This is a fantastic visual representation of how derivatives work and how they provide instantaneous rates of change at specific points! The slopes of these secant lines are gravitating toward \(2\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad