Pregunta
upstudy study bank question image url

27. Aviation A plane is flying at an elevation of 10,000 meters and a speed of 300 kilometers per hour. The pilot sees a lake at an angle of depression of \( 60^{\circ} \). In how much time, to the nearest minute, will the plane be directly over the lake?

Ask by Grant Mccarthy. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The plane will be directly over the lake in about 1 minute.

Solución

We begin by drawing a right triangle, where the plane’s altitude (10,000 m) is the vertical leg and the horizontal distance from the point on the ground directly beneath the plane to the lake is the horizontal leg. The pilot’s line of sight to the lake makes an angle of depression of 60° from the horizontal, which means the same angle appears as the angle of elevation from the lake. Let x represent the horizontal distance. Using the tangent function, we have:   tan(60°) = (altitude) / (x) Since tan(60°) = √3, we can solve for x:   √3 = 10,000 m / x  ⟹  x = 10,000 m / √3   x ≈ 10,000 / 1.732 ≈ 5773.5 m Next, convert the plane’s speed from kilometers per hour to meters per minute. Given that the plane flies at 300 km/h:   300 km/h = 300,000 m / 60 min = 5000 m/min Now, calculate the time required to cover the horizontal distance:   Time = distance / speed ≈ 5773.5 m / 5000 m/min ≈ 1.1547 minutes Rounding to the nearest minute, the time is approximately 1 minute. Thus, the plane will be directly over the lake in about 1 minute.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how long it will take for the plane to be directly over the lake, we first need to determine the horizontal distance from the plane to the lake at an elevation of 10,000 meters and an angle of depression of \( 60^{\circ} \). Using the tangent of the angle of depression, we can set up the equation: \[ \tan(60^{\circ}) = \frac{\text{opposite}}{\text{adjacent}} = \frac{10,000}{d} \] Where \( d \) is the horizontal distance. Since \( \tan(60^{\circ}) = \sqrt{3} \), the equation becomes: \[ \sqrt{3} = \frac{10,000}{d} \] Rearranging gives: \[ d = \frac{10,000}{\sqrt{3}} \approx 5773.50 \text{ meters} \] Now, to find the time it takes for the plane to cover this horizontal distance at a speed of 300 km/h, we first convert the speed to meters per second: \[ 300 \text{ km/h} = \frac{300,000 \text{ meters}}{3600 \text{ seconds}} \approx 83.33 \text{ m/s} \] Now, we can find the time \( t \): \[ t = \frac{d}{\text{speed}} = \frac{5773.50}{83.33} \approx 69.28 \text{ seconds} \] Finally, converting seconds to minutes gives: \[ t \approx 1.15 \text{ minutes} \] Rounding to the nearest minute, the time for the plane to be directly over the lake is approximately **1 minute**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad